A Hybrid Approach for SAT

Exploiting variable dependencies has been shown very useful in local search algorithms for SAT. In this paper, we extend the use of such dependencies by hybridizing a local search algorithm, Walksat, and the DPLL procedure, Satz. At each node reached in the DPLL search tree to a fixed depth, we construct the literal implication graph. Its strongly connected components are viewed as equivalency classes. Each one is substituted by a unique representative literal to reduce the constructed graph and the input formula. Finally, the implication dependencies are closed under transitivity. The resulted implications and equivalencies are exploited by Walksat at each node of the DPLL tree. Our approach is motivated by the power of the branching rule used in Satz that may provide a valid path to a solution, and generate more implications at deep nodes. Experimental results confirm the efficiency of our approach.

[1]  Thomas Stützle,et al.  Local Search Algorithms for SAT: An Empirical Evaluation , 2000, Journal of Automated Reasoning.

[2]  Jon W. Freeman Hard Random 3-SAT Problems and the Davis-Putnam Procedure , 1996, Artif. Intell..

[3]  Yuichi Asahiro,et al.  Random generation of test instances with controlled attributes , 1993, Cliques, Coloring, and Satisfiability.

[4]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[5]  Chu Min Li,et al.  Heuristics Based on Unit Propagation for Satisfiability Problems , 1997, IJCAI.

[6]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[7]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[8]  Narendra Jussien,et al.  Local search with constraint propagation and conflict-based heuristics , 2000, Artif. Intell..

[9]  Matthew L. Ginsberg,et al.  Dynamic Backtracking , 1993, J. Artif. Intell. Res..

[10]  Tracy Larrabee,et al.  Test Pattern Generation for Realistic Bridge Faults in CMOS ICs , 1991, 1991, Proceedings. International Test Conference.

[11]  J. Freeman Improvements to propositional satisfiability search algorithms , 1995 .

[12]  Jun Gu,et al.  Efficient local search for very large-scale satisfiability problems , 1992, SGAR.

[13]  James M. Crawford,et al.  Experimental Results on the Crossover Point in Random 3-SAT , 1996, Artif. Intell..

[14]  Tracy Larrabee,et al.  Test pattern generation using Boolean satisfiability , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[16]  Randal E. Bryant,et al.  Superscalar Processor Verification Using Efficient Reductions of the Logic of Equality with Uninterpreted Functions to Propositional Logic , 1999, CHARME.

[17]  Mark E. Stickel,et al.  Implementing the Davis–Putnam Method , 2000, Journal of Automated Reasoning.

[18]  Lakhdar Sais,et al.  Boosting complete techniques thanks to local search methods , 1998, Annals of Mathematics and Artificial Intelligence.

[19]  Bart Selman,et al.  Ten Challenges in Propositional Reasoning and Search , 1997, IJCAI.

[20]  Bart Selman,et al.  Encoding Plans in Propositional Logic , 1996, KR.

[21]  Pierre Marquis,et al.  Complexity Results for Independence and Definability in Propositional Logic , 1998, KR.

[22]  David A. McAllester,et al.  GSAT and Dynamic Backtracking , 1994, KR.

[23]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[24]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.