Cherry-Picking Gradients: Learning Low-Rank Embeddings of Visual Data via Differentiable Cross-Approximation

We propose an end-to-end trainable framework that processes large-scale visual data tensors by looking at a fraction of their entries only. Our method combines a neural network encoder with a tensor train decomposition to learn a low-rank latent encoding, coupled with crossapproximation (CA) to learn the representation through a subset of the original samples. CA is an adaptive sampling algorithm that is native to tensor decompositions and avoids working with the full high-resolution data explicitly. Instead, it actively selects local representative samples that we fetch out-of-core and on demand. The required number of samples grows only logarithmically with the size of the input. Our implicit representation of the tensor in the network enables processing large grids that could not be otherwise tractable in their uncompressed form. The proposed approach is particularly useful for large-scale multidimensional grid data (e.g., 3D tomography), and for tasks that require context over a large receptive field (e.g., predicting the medical condition of entire organs). The code is available at https://github.com/aelphy/c-pic.

[1]  Piotr Indyk,et al.  Learning-Based Low-Rank Approximations , 2019, NeurIPS.

[2]  Nicholas J. Tustison,et al.  Brain Tumor Segmentation Using an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features , 2018, Frontiers in Computational Neuroscience.

[3]  Ivan V. Oseledets,et al.  Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..

[4]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[5]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[6]  Christos Davatzikos,et al.  Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features , 2017, Scientific Data.

[7]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[8]  Marek Franaszek,et al.  Multiple neural network classification scheme for detection of colonic polyps in CT colonography data sets. , 2003, Academic radiology.

[9]  S. Goreinov,et al.  How to find a good submatrix , 2010 .

[10]  Camilo Bermudez,et al.  Anatomical context improves deep learning on the brain age estimation task. , 2019, Magnetic resonance imaging.

[11]  Hoang Duong Tuan,et al.  Optimal Feature Extraction and Classification of Tensors via Matrix Product State Decomposition , 2015, 2015 IEEE International Congress on Big Data.

[12]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[13]  Peter Lindstrom,et al.  TTHRESH: Tensor Compression for Multidimensional Visual Data , 2018, IEEE Transactions on Visualization and Computer Graphics.

[14]  S. Goreinov,et al.  The maximum-volume concept in approximation by low-rank matrices , 2001 .

[15]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[16]  D. Vetrov,et al.  Subset-Conditioned Generation Using Variational Autoencoder With A Learnable Tensor-Train Induced Prior , 2018 .

[17]  Xiaobo Zhou,et al.  Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients , 2018, European Radiology.

[18]  Laurens van der Maaten,et al.  3D Semantic Segmentation with Submanifold Sparse Convolutional Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[19]  B. Liu DeepCP: Flexible Nonlinear Tensor Decomposition , 2017 .

[20]  Renato Pajarola,et al.  Analysis of tensor approximation for compression-domain volume visualization , 2015, Comput. Graph..

[21]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[22]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[23]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[24]  Dmitry V. Savostyanov,et al.  Quasioptimality of maximum-volume cross interpolation of tensors , 2013, 1305.1818.

[25]  Alexander Novikov,et al.  Tensorizing Neural Networks , 2015, NIPS.

[26]  Liyuan Liu,et al.  On the Variance of the Adaptive Learning Rate and Beyond , 2019, ICLR.

[27]  Jan Dirk Wegner,et al.  Inference, Learning and Attention Mechanisms that Exploit and Preserve Sparsity in CNNs , 2018, International Journal of Computer Vision.

[28]  Stephen P. Boyd,et al.  Differentiable Convex Optimization Layers , 2019, NeurIPS.

[29]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[30]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[31]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[32]  Gernot Riegler,et al.  OctNet: Learning Deep 3D Representations at High Resolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Alán Aspuru-Guzik,et al.  Deep learning enables rapid identification of potent DDR1 kinase inhibitors , 2019, Nature Biotechnology.

[34]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[35]  A. Cichocki,et al.  Tensor decompositions for feature extraction and classification of high dimensional datasets , 2010 .

[36]  Tamir Hazan,et al.  Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.

[37]  Klaus H. Maier-Hein,et al.  Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge , 2017, BrainLes@MICCAI.

[38]  et al.,et al.  Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge , 2018, ArXiv.

[39]  Silvio Savarese,et al.  4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[41]  Kazunori Sato,et al.  Age estimation from brain MRI images using deep learning , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[42]  Rafal Zdunek,et al.  Distributed and Randomized Tensor Train Decomposition for Feature Extraction , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[43]  Zenglin Xu,et al.  Distributed Flexible Nonlinear Tensor Factorization , 2016, NIPS.

[44]  Andrzej Cichocki,et al.  Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions , 2016, Found. Trends Mach. Learn..

[45]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[46]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[47]  H. Andrews,et al.  Singular value decompositions and digital image processing , 1976 .

[48]  Eugene E. Tyrtyshnikov,et al.  Algebraic Wavelet Transform via Quantics Tensor Train Decomposition , 2011, SIAM J. Sci. Comput..

[49]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Larry S. Davis,et al.  Learning Structured Low-Rank Representations for Image Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.