Pathwise Estimation of Probability Sensitivities Through Terminating or Steady-State Simulations

A probability is the expectation of an indicator function. However, the standard pathwise sensitivity estimation approach, which interchanges the differentiation and expectation, cannot be directly applied because the indicator function is discontinuous. In this paper, we design a pathwise sensitivity estimator for probability functions based on a result of Hong [Hong, L. J. 2009. Estimating quantile sensitivities. Oper. Res.57(1) 118--130]. We show that the estimator is consistent and follows a central limit theorem for simulation outputs from both terminating and steady-state simulations, and the optimal rate of convergence of the estimator is n-2/5 where n is the sample size. We further demonstrate how to use importance sampling to accelerate the rate of convergence of the estimator to n-1/2, which is the typical rate of convergence for statistical estimation. We illustrate the performances of our estimators and compare them to other well-known estimators through several examples.

[1]  P. Glasserman,et al.  Estimating security price derivatives using simulation , 1996 .

[2]  Donald L. Iglehart,et al.  Large-sample theory for standardized time series: an overview , 1985, WSC '85.

[3]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[4]  Xi-Ren Cao Convergence of parameter sensitivity estimates in a stochastic experiment , 1984, The 23rd IEEE Conference on Decision and Control.

[5]  E. Lehmann Elements of large-sample theory , 1998 .

[6]  Xi-Ren Cao,et al.  Perturbation analysis and optimization of queueing networks , 1983 .

[7]  Jian-Qiang Hu,et al.  Conditional Monte Carlo: Gradient Estimation and Optimization Applications , 2012 .

[8]  S. Utev,et al.  On the Central Limit Theorem for $\varphi$-Mixing Arrays of Random Variables , 1991 .

[9]  David Goldsman,et al.  Large-Sample Results for Batch Means , 1997 .

[10]  Michael C. Fu,et al.  Conditional Monte Carlo , 1997 .

[11]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..

[12]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[13]  Pierre L'Ecuyer,et al.  An overview of derivative estimation , 1991, 1991 Winter Simulation Conference Proceedings..

[14]  J. Marsden,et al.  Elementary classical analysis , 1974 .

[15]  L. Jeff Hong,et al.  Estimating Quantile Sensitivities , 2009, Oper. Res..

[16]  Philip Heidelberger,et al.  Quantile Estimation in Dependent Sequences , 1984, Oper. Res..

[17]  Viral V. Acharya,et al.  Credit Risk: Pricing, Measurement, and Management , 2005 .

[18]  Paul Glasserman,et al.  Gradient Estimation Via Perturbation Analysis , 1990 .

[19]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[20]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .