On Persistency of Excitation and Formulas for Data-driven Control

In a paper by Willems and coworkers it was shown that persistently exciting data could be used to represent the input-output trajectory of a linear system. Inspired by this fundamental result, we derive a parametrization of linear feedback systems that paves the way to solve important control problems using data-dependent Linear Matrix Inequalities only. The result is remarkable in that no explicit system’s matrices identification is required. The examples of control problems we solve include the state feedback stabilization and the linear quadratic regulation problems. We also extend the stabilization problem to the case of output feedback control design.

[1]  Hong Ye,et al.  Scheduling of networked control systems , 2001 .

[2]  Zhong-Ping Jiang,et al.  Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics , 2012, Autom..

[3]  Pietro Tesi,et al.  Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness , 2019, IEEE Transactions on Automatic Control.

[4]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[5]  V. Verdult,et al.  Filtering and System Identification: A Least Squares Approach , 2007 .

[6]  Alessandro Astolfi,et al.  A Geometric Characterization of the Persistence of Excitation Condition for the Solutions of Autonomous Systems , 2017, IEEE Transactions on Automatic Control.

[7]  Paolo Rapisarda,et al.  On the linear quadratic data-driven control , 2007, 2007 European Control Conference (ECC).

[8]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[9]  Alberto Bemporad,et al.  Data-based predictive control via direct weight optimization , 2018 .

[10]  Diego Eckhard,et al.  Data-driven model reference control design by prediction error identification , 2017, J. Frankl. Inst..

[11]  I. Postlethwaite,et al.  Linear Matrix Inequalities in Control , 2007 .

[12]  Sergio M. Savaresi,et al.  Data-driven design of two degree-of-freedom nonlinear controllers: The -IBC approach , 2016, Autom..

[13]  B. De Moor,et al.  State Representations From Finite Time Series , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[14]  Paolo Rapisarda,et al.  Data-driven simulation and control , 2008, Int. J. Control.

[15]  Zhong-Ping Jiang,et al.  Data-driven Finite-horizon Optimal Control for Linear Time-varying Discrete-time Systems , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[16]  E. Feron,et al.  Numerical Methods for H2 Related Problems , 1992, 1992 American Control Conference.

[17]  Hugues Garnier,et al.  Continuous-time model identification from sampled data: Implementation issues and performance evaluation , 2003 .

[18]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[19]  Frank L. Lewis,et al.  Online actor critic algorithm to solve the continuous-time infinite horizon optimal control problem , 2009, 2009 International Joint Conference on Neural Networks.

[20]  Michael G. Safonov,et al.  The unfalsified control concept: A direct path from experiment to controller , 1995 .

[21]  Sergio M. Savaresi,et al.  Optimal input design for direct data-driven tuning of model-reference controllers , 2013, Autom..

[22]  Giacomo Baggio,et al.  Data-Driven Minimum-Energy Controls for Linear Systems , 2019, IEEE Control Systems Letters.

[23]  Paul J. Werbos,et al.  Neural networks for control and system identification , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[24]  Lorenzo Fagiano,et al.  Direct feedback control design for nonlinear systems , 2013, Autom..

[25]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[26]  Alexandre S. Bazanella,et al.  Data-Driven LQR Control Design , 2018, IEEE Control Systems Letters.

[27]  Giacomo Baggio,et al.  Data-driven Learning of Minimum-Energy Controls for Linear Systems , 2019, ArXiv.

[28]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[29]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[30]  John Lygeros,et al.  Data-Enabled Predictive Control: In the Shallows of the DeePC , 2018, 2019 18th European Control Conference (ECC).

[31]  Venkataramanan Balakrishnan,et al.  Semidefinite programming duality and linear time-invariant systems , 2003, IEEE Trans. Autom. Control..

[32]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[33]  Mario Sznaier,et al.  A Moments Based Approach to Designing MIMO Data Driven Controllers for Switched Systems , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[34]  Alessandro Astolfi,et al.  Towards deterministic subspace identification for autonomous nonlinear systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[35]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002, Autom..

[36]  Stephen P. Boyd,et al.  Numerical Methods for H 2 Related Problems , 1992 .

[37]  Liuping Wang,et al.  Identification of Continuous-time Models from Sampled Data , 2008 .

[38]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[39]  Zhuo Wang,et al.  From model-based control to data-driven control: Survey, classification and perspective , 2013, Inf. Sci..

[40]  Masao Ikeda,et al.  Stability analysis and control design of LTI discrete-time systems by the direct use of time series data , 2009, Autom..

[41]  Cédric Join,et al.  Model-free control , 2013, Int. J. Control.

[42]  A. Karimi,et al.  Data‐driven model reference control with asymptotically guaranteed stability , 2011 .

[43]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[44]  Aranya Chakrabortty,et al.  On Model-Free Reinforcement Learning of Reduced-Order Optimal Control for Singularly Perturbed Systems , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[45]  Bart De Moor,et al.  A note on persistency of excitation , 2005, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[46]  Paolo Rapisarda,et al.  Data-driven control: A behavioral approach , 2017, Syst. Control. Lett..