On the use of the observability gramian for partially observed robotic path planning problems

Optimizing measures of the observability Gramian as a surrogate for the estimation performance may provide irrelevant or misleading trajectories for planning under observation uncertainty.

[1]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[2]  Leslie Pack Kaelbling,et al.  Belief space planning assuming maximum likelihood observations , 2010, Robotics: Science and Systems.

[3]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[4]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[5]  Didier Georges Energy Minimization and Observability Maximization in Multi-Hop Wireless Sensor Networks , 2011 .

[6]  Derek A. Paley,et al.  Observability-based Optimization of Coordinated Sampling Trajectories for Recursive Estimation of a Strong, Spatially Varying Flowfield , 2013, J. Intell. Robotic Syst..

[7]  John A. Marchant,et al.  Controllability and Observability: Tools for Kalman Filter Design , 1998, BMVC.

[8]  Juergen Hahn,et al.  Determining Optimal Sensor Locations for State and Parameter Estimation for Stable Nonlinear Systems , 2005 .

[9]  Robert Platt,et al.  Convex Receding Horizon Control in Non-Gaussian Belief Space , 2012, WAFR.

[10]  Arthur J. Krener,et al.  Measures of unobservability , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[11]  Ming Lei,et al.  Fisher information matrix-based nonlinear system conversion for state estimation , 2010, IEEE ICCA 2010.

[12]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[13]  Umesh Vaidya,et al.  Observability gramian for nonlinear systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[14]  Zhenyu Kong,et al.  Fault Diagnosis in Multistation Assembly Systems Using Spatially Correlated Bayesian Learning Algorithm , 2018 .

[15]  Leslie Pack Kaelbling,et al.  Non-Gaussian belief space planning: Correctness and complexity , 2012, 2012 IEEE International Conference on Robotics and Automation.

[16]  Panganamala Ramana Kumar,et al.  T-LQG: Closed-loop belief space planning via trajectory-optimized LQG , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[17]  Kristi A. Morgansen,et al.  Observability based control in range-only underwater vehicle localization , 2014, 2014 American Control Conference.

[18]  A. J. Lacey,et al.  Tutorial: The Likelihood Interpretation of the Kalman Filter. , 1996 .

[19]  Robert E. Skelton,et al.  Assigning controllability and observability Gramians in feedback control , 1991 .

[20]  Brian T. Hinson,et al.  Observability-Based Guidance and Sensor Placement , 2014 .

[21]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .

[22]  Panganamala Ramana Kumar,et al.  Belief Space Planning Simplified: Trajectory-Optimized LQG (T-LQG) (Extended Report) , 2016, ArXiv.

[23]  Kristi A. Morgansen,et al.  Path planning to optimize observability in a planar uniform flow field , 2013, 2013 American Control Conference.

[24]  Panganamala Ramana Kumar,et al.  Feedback motion planning under non-Gaussian uncertainty and non-convex state constraints , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Derek A. Paley,et al.  Wake Sensing and Estimation for Control of Autonomous Aircraft in Formation Flight , 2016 .

[26]  Howie Choset,et al.  Use of the nonlinear observability rank condition for improved parametric estimation , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[27]  Panganamala Ramana Kumar,et al.  A near-optimal decoupling principle for nonlinear stochastic systems arising in robotic path planning and control , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[28]  Pieter Abbeel,et al.  LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information , 2010, Int. J. Robotics Res..