ACO Beats EA on a Dynamic Pseudo-Boolean Function

In this paper, we contribute to the understanding of the behavior of bio-inspired algorithms when tracking the optimum of a dynamically changing fitness function over time. In particular, we are interested in the difference between a simple evolutionary algorithm (EA) and a simple ant colony optimization (ACO) system on deterministically changing fitness functions, which we call dynamic fitness patterns. Of course, the algorithms have no prior knowledge about the patterns. We construct a bit string optimization problem where we can show that the ACO system is able to follow the optimum while the EA gets lost.

[1]  Per Kristian Lehre,et al.  Dynamic evolutionary optimisation: an analysis of frequency and magnitude of change , 2009, GECCO.

[2]  Robert Schaefer Parallel Problem Solving from Nature - PPSN XI, 11th International Conference, Kraków, Poland, September 11-15, 2010. Proceedings, Part II , 2010, PPSN.

[3]  Stefan Droste,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods Analysis of the (1+1) Ea for a Dynamically Bitwise Changing Onemax Analysis of the (1+1) Ea for a Dynamically Bitwise Changing Onemax , 2003 .

[4]  Dirk Sudholt,et al.  A few ants are enough: ACO with iteration-best update , 2010, GECCO '10.

[5]  Stefan Droste,et al.  Analysis of the (1+1) EA for a dynamically changing ONEMAX-variant , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[6]  Frank Neumann,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods Runtime Analysis of a Simple Ant Colony Optimization Algorithm Runtime Analysis of a Simple Ant Colony Optimization Algorithm , 2022 .

[7]  Dirk Sudholt,et al.  Analysis of different MMAS ACO algorithms on unimodal functions and plateaus , 2009, Swarm Intelligence.

[8]  Xin Yao,et al.  The Impact of Mutation Rate on the Computation Time of Evolutionary Dynamic Optimization , 2011, ArXiv.

[9]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[10]  Dong Zhou,et al.  The use of tail inequalities on the probable computational time of randomized search heuristics , 2012, Theor. Comput. Sci..

[11]  Dirk Sudholt,et al.  Simple max-min ant systems and the optimization of linear pseudo-boolean functions , 2010, FOGA '11.

[12]  Leslie Ann Goldberg,et al.  Drift Analysis with Tail Bounds , 2010, PPSN.

[13]  Leslie Ann Goldberg,et al.  Adaptive Drift Analysis , 2011, Algorithmica.

[14]  Pietro Simone Oliveto,et al.  Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation , 2008, Algorithmica.

[15]  W. Gutjahr,et al.  Runtime Analysis of Ant Colony Optimization with Best-So-Far Reinforcement , 2008 .

[16]  Dirk Sudholt,et al.  On the runtime analysis of the 1-ANT ACO algorithm , 2007, GECCO '07.

[17]  Thomas Jansen,et al.  Theoretical analysis of a mutation-based evolutionary algorithm for a tracking problem in the lattice , 2005, GECCO '05.

[18]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[19]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.