Secret Sharing Schemes for Very Dense Graphs

A secret-sharing scheme realizes a graph if every two vertices connected by an edge can reconstruct the secret while every independent set in the graph does not get any information on the secret. Similar to secret-sharing schemes for general access structures, there are gaps between the known lower bounds and upper bounds on the share size for graphs. Motivated by the question of what makes a graph "hard" for secret-sharing schemes, we study very dense graphs, that is, graphs whose complement contains few edges. We show that if a graph with n vertices contains $$\left {\begin{array}{c}n\\ 2\end{array}}\right -n^{1+\beta }$$ edges for some constant $$0 \le \beta <1$$, then there is a scheme realizing the graph with total share size of $$\tilde{O}n^{5/4+3\beta /4}$$. This should be compared to $$On^2/\log n$$ --- the best upper bound known for general graphs. Thus, if a graph is "hard", then the graph and its complement should have many edges. We generalize these results to nearly complete k-homogeneous access structures for a constant k. To complement our results, we prove lower bounds for secret-sharing schemes realizing very dense graphs, e.g., for linear secret-sharing schemes we prove a lower bound of $$\varOmega n^{1+\beta /2}$$.

[1]  Michael Mitzenmacher,et al.  Probability And Computing , 2005 .

[2]  Carles Padró,et al.  Lower bounds on the information rate of secret sharing schemes with homogeneous access structure , 2002, Inf. Process. Lett..

[3]  László Csirmaz,et al.  The Size of a Share Must Be Large , 1994, Journal of Cryptology.

[4]  Marten van Dijk On the information rate of perfect secret sharing schemes , 1995, Des. Codes Cryptogr..

[5]  Ueli Maurer,et al.  General Secure Multi-party Computation from any Linear Secret-Sharing Scheme , 2000, EUROCRYPT.

[6]  László Csirmaz Secret sharing on infinite graphs , 2007, IACR Cryptol. ePrint Arch..

[7]  Stasys Jukna On set intersection representations of graphs , 2009 .

[8]  Gábor Tardos,et al.  Secret sharing on trees: problem solved , 2009, IACR Cryptol. ePrint Arch..

[9]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[10]  Tamir Tassa,et al.  Generalized oblivious transfer by secret sharing , 2011, Des. Codes Cryptogr..

[11]  Carles Padró,et al.  Secret Sharing Schemes on Sparse Homogeneous Access Structures with Rank Three , 2004, Electron. J. Comb..

[12]  Alfredo De Santis,et al.  Graph decompositions and secret sharing schemes , 2004, Journal of Cryptology.

[13]  Mark Jerrum,et al.  A Very Simple Algorithm for Estimating the Number of k-Colorings of a Low-Degree Graph , 1995, Random Struct. Algorithms.

[14]  Carles Padró,et al.  Secret Sharing Schemes with Three or Four Minimal Qualified Subsets , 2005, Des. Codes Cryptogr..

[15]  Douglas R. Stinson,et al.  Decomposition constructions for secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.

[16]  Brent Waters,et al.  Attribute-based encryption for fine-grained access control of encrypted data , 2006, CCS '06.

[17]  Carles Padró,et al.  Secret sharing schemes with bipartite access structure , 2000, IEEE Trans. Inf. Theory.

[18]  Pavel Pudlák,et al.  A note on monotone complexity and the rank of matrices , 2003, Inf. Process. Lett..

[19]  Carles Padró,et al.  On secret sharing schemes, matroids and polymatroids , 2006, J. Math. Cryptol..

[20]  Ingo Wegener,et al.  The Complexity of Symmetric Boolean Functions , 1987, Computation Theory and Logic.

[21]  Hung-Min Sun,et al.  Secret sharing in graph-based prohibited structures , 1997, Proceedings of INFOCOM '97.

[22]  Ehud D. Karnin,et al.  On secret sharing systems , 1983, IEEE Trans. Inf. Theory.

[23]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[24]  Yuval Ishai,et al.  On the Cryptographic Complexity of the Worst Functions , 2014, TCC.

[25]  Moni Naor,et al.  Access Control and Signatures via Quorum Secret Sharing , 1998, IEEE Trans. Parallel Distributed Syst..

[26]  K. Srinathan,et al.  Alternative Protocols for Generalized Oblivious Transfer , 2008, ICDCN.

[27]  A. Sokal,et al.  Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem , 1996, cond-mat/9603068.

[28]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[29]  Amos Beimel,et al.  Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.

[30]  Eyal Kushilevitz,et al.  Secret sharing over infinite domains , 1993, Journal of Cryptology.

[31]  Noga Alon,et al.  Covering graphs by the minimum number of equivalence relations , 1986, Comb..

[32]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[33]  Anna Gál,et al.  Lower bounds for monotone span programs , 2005, computational complexity.

[34]  Paul Erdös,et al.  Covering a graph by complete bipartite graphs , 1997, Discret. Math..

[35]  Alfredo De Santis,et al.  On the Information Rate of Secret Sharing Schemes , 1996, Theor. Comput. Sci..

[36]  Alfredo De Santis,et al.  Tight Bounds on the Information Rate of Secret Sharing Schemes , 1997, Des. Codes Cryptogr..

[37]  László Csirmaz Secret sharing schemes on graphs , 2005, IACR Cryptol. ePrint Arch..

[38]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[39]  Giovanni Di Crescenzo,et al.  Hypergraph decomposition and secret sharing , 2003, Discret. Appl. Math..

[40]  David Chaum,et al.  Multiparty unconditionally secure protocols , 1988, STOC '88.

[41]  Pavel Pudlák Monotone complexity and the rank of matrices , 2002, Electron. Colloquium Comput. Complex..

[42]  Ernest F. Brickell,et al.  Some Ideal Secret Sharing Schemes , 1990, EUROCRYPT.

[43]  Alfredo De Santis,et al.  On the size of shares for secret sharing schemes , 1991, Journal of Cryptology.

[44]  Avi Wigderson,et al.  Superpolynomial Lower Bounds for Monotone Span Programs , 1996, Comb..

[45]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[46]  Carles Padró,et al.  Ideal Multipartite Secret Sharing Schemes , 2007, Journal of Cryptology.

[47]  Yvo Desmedt,et al.  Shared Generation of Authenticators and Signatures (Extended Abstract) , 1991, CRYPTO.

[48]  Siegfried Bublitz,et al.  Decomposition of graphs and monotone formula size of homogeneous functions , 1986, Acta Informatica.

[49]  Douglas R. Stinson,et al.  New General Lower Bounds on the Information Rate of Secret Sharing Schemes , 1992, CRYPTO.

[50]  Anna Gál A characterization of span program size and improved lower bounds for monotone span programs , 1998, STOC '98.

[51]  László Csirmaz,et al.  An impossibility result on graph secret sharing , 2009, Des. Codes Cryptogr..

[52]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[53]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[54]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[55]  Catherine A. Meadows,et al.  Security of Ramp Schemes , 1985, CRYPTO.

[56]  Hung-Min Sun,et al.  Decomposition Construction for Secret Sharing Schemes with Graph Access Structures in Polynomial Time , 2010, SIAM J. Discret. Math..

[57]  Amos Beimel,et al.  Secret-Sharing Schemes: A Survey , 2011, IWCC.

[58]  Ernest F. Brickell,et al.  On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.

[59]  Brent Waters,et al.  Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization , 2011, Public Key Cryptography.