Coordinate-invariant rigid-body interpolation on a parametric C 1 dual quaternion curve

Abstract We present a method to generate first-order continuous rigid-body motion by interpolation. The input is a sequence of rigid-body poses at given timesteps, which the body is required to pass through (key poses). Different from frequently employed interpolation schemes, the generated rigid-body motion is unique no matter what reference coordinate systems are chosen. Our method is novel in that the user can optionally prescribe key velocity data, too. If key velocities are not prescribed, parametric velocities are computed and incorporated into the interpolating function. The parameters allow to subsequently adjust the rigid-body trajectory. Another purpose of this article is a comprehensive derivation of coordinate-invariant interpolation along with a concise collection of proofs. The derivation enables the reader to straight-forwardly implement this method. Numerical examples are given to highlight the benefits and motivate the implementation.

[1]  Kostas Daniilidis,et al.  Hand-Eye Calibration Using Dual Quaternions , 1999, Int. J. Robotics Res..

[2]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[3]  Joris De Schutter,et al.  Recognition of 6 DOF rigid body motion trajectories using a coordinate-free representation , 2011, 2011 IEEE International Conference on Robotics and Automation.

[4]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[5]  Jarek Rossignac,et al.  Computing and visualizing pose-interpolating 3D motions , 2001, Comput. Aided Des..

[6]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[7]  Wilhelm Blaschke,et al.  Kinematik und Quaternionen , 1960 .

[8]  E. Study Von den Bewegungen und Umlegungen , 1891 .

[9]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[10]  Richard H. Bartels,et al.  Interpolating splines with local tension, continuity, and bias control , 1984, SIGGRAPH.

[11]  Clifford,et al.  Preliminary Sketch of Biquaternions , 1871 .

[12]  J. Crisco,et al.  Interpolating three-dimensional kinematic data using quaternion splines and hermite curves. , 2005, Journal of biomechanical engineering.

[13]  Sung-yong Shin,et al.  A Compact Differential Formula for the First Derivative of a Unit Quaternion Curve , 1996 .

[14]  M. Hiller,et al.  A unified representation of spatial displacements , 1984 .

[15]  Bahram Ravani,et al.  Geometric Construction of Bézier Motions , 1994 .

[16]  Alan Watt,et al.  Advanced animation and rendering techniques - theory and practice , 1992 .

[17]  L. Kavan,et al.  Dual Quaternions for Rigid Transformation Blending , 2006 .