Cognitive Consilience: Primate Non-Primary Neuroanatomical Circuits Underlying Cognition

Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis of cognitive information processing in the mammalian brain. Understanding the principles of neuroanatomical organization in these structures is critical to understanding the functions they perform and ultimately how the human brain works. We have manually distilled and synthesized hundreds of primate neuroanatomy facts into a single interactive visualization. The resulting picture represents the fundamental neuroanatomical blueprint upon which cognitive functions must be implemented. Within this framework we hypothesize and detail 7 functional circuits corresponding to psychological perspectives on the brain: consolidated long-term declarative memory, short-term declarative memory, working memory/information processing, behavioral memory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including the cerebral isocortex (9 pyramidal neuronal groups), parahippocampal gyrus and hippocampus, thalamus (4 neuronal groups), basal ganglia (7 neuronal groups), metencephalon, basal forebrain, and other subcortical nuclei. We focus on neuroanatomy related to primate non-primary cortical systems to elucidate the basis underlying the distinct homotypical cognitive architecture. To display the breadth of this review, we introduce a novel method of integrating and presenting data in multiple independent visualizations: an interactive website (http://www.frontiersin.org/files/cognitiveconsilience/index.html) and standalone iPhone and iPad applications. With these tools we present a unique, annotated view of neuroanatomical consilience (integration of knowledge).

[1]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[2]  G Mann,et al.  ON THE THALAMUS * , 1905, British medical journal.

[3]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[4]  G. J. Romanes,et al.  The Neocortex of Macaca mulatta , 1948 .

[5]  W. Penfield,et al.  The Cerebral Cortex of Man: A Clinical Study of Localization of Function , 1968 .

[6]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[7]  H. Jasper,et al.  Independence of diffuse thalamo-cortical projection system shown by specific nuclear destructions. , 1953, Journal of neurophysiology.

[8]  D. Lindsley,et al.  Nature of recruiting response. , 1953, Journal of neurophysiology.

[9]  Herbert N. Jasper,et al.  The non-specific thalamocortical projection system. , 1954, Journal of neurosurgery.

[10]  N. Geschwind Disconnexion syndromes in animals and man. I. , 1965, Brain : a journal of neurology.

[11]  N. Geschwind Disconnexion syndromes in animals and man. II. , 1965, Brain : a journal of neurology.

[12]  M. Karnovsky,et al.  THF EARLY STAGES OF ABSORPTION OF INJECTED HORSERADISH PEROXIDASE IN THE PROXIMAL TUBULES OF MOUSE KIDNEY: ULTRASTRUCTURAL CYTOCHEMISTRY BY A NEW TECHNIQUE , 1966, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[13]  A. Scheibel,et al.  The organization of the nucleus reticularis thalami: a Golgi study. , 1966, Brain research.

[14]  K. Kristensson,et al.  Retrograde axonal transport of protein. , 1971, Brain research.

[15]  J. Szentágothai The ‘module-concept’ in cerebral cortex architecture , 1975, Brain Research.

[16]  E. G. Jones,et al.  Some aspects of the organization of the thalamic reticular complex , 2004, The Journal of comparative neurology.

[17]  H. Burton,et al.  Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates , 1976, The Journal of comparative neurology.

[18]  J. Trojanowski,et al.  Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey , 1976, The Journal of comparative neurology.

[19]  R. Porter,et al.  Cells of origin and terminal distrubution of corticostriatal fibers arising in the sensory‐motor cortex of monkeys , 1977, The Journal of comparative neurology.

[20]  S P Wise,et al.  Size, laminar and columnar distribution of efferent cells in the sensory‐motor cortex of monkeys , 1977, The Journal of comparative neurology.

[21]  H. Kuypers,et al.  Differential laminar distribution of corticothalamic neurons projecting to the VL and the center median. An HRP study in the cynomolgus monkey , 1978, Brain Research.

[22]  P. Brodal,et al.  The corticopontine projection in the rhesus monkey. Origin and principles of organization. , 1978, Brain : a journal of neurology.

[23]  M. Herkenham The afferent and efferent connections of the ventromedial thalamic nucleus in the rat , 1979, The Journal of comparative neurology.

[24]  A R Damasio,et al.  The anatomical basis of conduction aphasia. , 1980, Brain : a journal of neurology.

[25]  M. Herkenham Laminar organization of thalamic projections to the rat neocortex. , 1980, Science.

[26]  W M Cowan,et al.  Subcortical afferents to the hippocampal formation in the monkey , 1980, The Journal of comparative neurology.

[27]  H Sherk,et al.  The visual claustrum of the cat. I. Structure and connections , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  S. Levay,et al.  The visual claustrum of the cat. III. Receptive field properties , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  A. Baddeley The concept of working memory: A view of its current state and probable future development , 1981, Cognition.

[30]  John Nolte,et al.  Human Brain , 1981 .

[31]  J. Lund,et al.  Anatomical organization of primate visual cortex area VII , 1981, The Journal of comparative neurology.

[32]  Larry L. Butcher,et al.  Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: A combined fluorescent tracer and acetylcholinesterase analysis , 1982, Brain Research Bulletin.

[33]  T. P. S. Powell,et al.  The organization of the connections between the cortex and the claustrum in the monkey , 1982, Brain Research.

[34]  C. Gerfen The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems , 1984, Nature.

[35]  G. Leichnetz,et al.  Cortical projections to the paramedian tegmental and basilar pons in the monkey , 1984, The Journal of comparative neurology.

[36]  R. Andersen,et al.  The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: Divergent cortical projections from cell clusters in the medial pulvinar nucleus , 1985, The Journal of comparative neurology.

[37]  H. Fibiger,et al.  Distribution of central cholinergic neurons in the baboon (papio papio). II. A topographic atlas correlated with catecholamine neurons , 1985, The Journal of comparative neurology.

[38]  M. Glickstein,et al.  Corticopontine projection in the rat: The distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei , 1989, The Journal of comparative neurology.

[39]  P. Goldman-Rakic,et al.  The primate mediodorsal (MD) nucleus and its projection to the frontal lobe , 1985, The Journal of comparative neurology.

[40]  S. Levay,et al.  Synaptic organization of claustral and geniculate afferents to the visual cortex of the cat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  E G Jones,et al.  Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[43]  K. Kubota,et al.  The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: A retrograde study using HRP‐gel , 1986, The Journal of comparative neurology.

[44]  H. Barbas Pattern in the laminar origin of corticocortical connections , 1986, The Journal of comparative neurology.

[45]  D. Amaral,et al.  The entorhinal cortex of the monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[46]  D. Amaral,et al.  The entorhinal cortex of the monkey: III. Subcortical afferents , 1987, The Journal of comparative neurology.

[47]  D L Rosene,et al.  Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents , 1987, The Journal of comparative neurology.

[48]  L C Katz,et al.  Local circuitry of identified projection neurons in cat visual cortex brain slices , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  P S Goldman-Rakic,et al.  Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys , 1988, The Journal of comparative neurology.

[50]  R Porter,et al.  Morphology of pyramidal neurones in monkey motor cortex and the synaptic actions of their intracortical axon collaterals. , 1988, The Journal of physiology.

[51]  A. Parent,et al.  Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei , 1988, Neuroscience.

[52]  A. Parent,et al.  Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey , 1988, Neuroscience.

[53]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[54]  M. Witter,et al.  Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region , 1989, Progress in Neurobiology.

[55]  D. Salmon,et al.  Neuropsychological evidence for multiple implicit memory systems: a comparison of Alzheimer's, Huntington's, and Parkinson's disease patients , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  A. Parent,et al.  Distinct afferents to internal and external pallidal segments in the squirrel monkey , 1989, Neuroscience Letters.

[57]  A. Graybiel,et al.  Distinct nigrostriatal projection systems innervate striosomes and matrix in the primate striatum , 1989, Brain Research.

[58]  G. Meyer,et al.  The spiny stellate neurons in layer IV of the human auditory cortex. A Golgi study , 1989, Neuroscience.

[59]  C. Gerfen The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. , 1989, Science.

[60]  F. Reinoso-suárez,et al.  Topographical organization of the projections from the reticular thalamic nucleus to the intralaminar and medial thalamic nuclei in the cat , 1989, The Journal of comparative neurology.

[61]  S. Haber,et al.  Topographic organization of the ventral striatal efferent projections in the rhesus monkey: An anterograde tracing study , 1990, The Journal of comparative neurology.

[62]  T. Voigt,et al.  Morphology of the cells within the inferior temporal gyrus that project to the prefrontal cortex in the macaque monkey , 1990, The Journal of comparative neurology.

[63]  G. W. Arbuthnott,et al.  Distribution and synaptic contacts of the cortical terminals arising from neurons in the rat ventromedial thalamic nucleus , 1990, Neuroscience.

[64]  A. Parent,et al.  Projection from the external pallidum to the reticular thalamic nucleus in the squirrel monkey , 1991, Brain Research.

[65]  A. Parent,et al.  Contralateral pallidothalamic and pallidotegmental projections in primates: an anterograde and retrograde labeling study , 1991, Brain Research.

[66]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[67]  D. Price,et al.  Cholinergic immunoreactive fibers in monkey anterior temporal cortex. , 1992, Cerebral cortex.

[68]  K. Nakano,et al.  An autoradiographic study of cortical projections from motor thalamic nuclei in the macaque monkey , 1992, Neuroscience Research.

[69]  H. Karten,et al.  Pyramidal neurons of the rat cerebral cortex, immunoreactive to nicotinic acetylcholine receptors, project mainly to subcortical targets , 1992, The Journal of comparative neurology.

[70]  A. Parent,et al.  Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity , 1992, The Journal of comparative neurology.

[71]  Jan G. Bjaalie,et al.  Organization of the pontine nuclei , 1992, Neuroscience Research.

[72]  B. Stanfield The development of the corticospinal projection , 1992, Progress in Neurobiology.

[73]  K. Rockland,et al.  Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. , 1992, Cerebral cortex.

[74]  A. Parent,et al.  Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A PHA‐L study of subcortical projections , 1992, The Journal of comparative neurology.

[75]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[76]  J. Lund,et al.  Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics , 1993, The Journal of comparative neurology.

[77]  J. B. Levitt,et al.  Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46) , 1993, The Journal of comparative neurology.

[78]  S. D. L. Heras,et al.  Afferent projections to the reticular thalamic nucleus from the globus pallidus and the substantia nigra in the rat , 1993, Brain Research Bulletin.

[79]  S. Haber,et al.  Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input , 1994, The Journal of comparative neurology.

[80]  A. Charara,et al.  Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey , 1994, Brain Research.

[81]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[82]  Charles J. Wilson,et al.  Striatal interneurones: chemical, physiological and morphological characterization , 1995, Trends in Neurosciences.

[83]  D. Pandya,et al.  Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function , 1995, Neuroscience Letters.

[84]  L. Squire,et al.  Retrograde amnesia and memory consolidation: a neurobiological perspective , 1995, Current Opinion in Neurobiology.

[85]  P. Rakic A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution , 1995, Trends in Neurosciences.

[86]  P. Goldman-Rakic,et al.  Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey , 1995, The Journal of comparative neurology.

[87]  Jon H. Kaas,et al.  The emergence and evolution of mammalian neocortex , 1995, Trends in Neurosciences.

[88]  I Fujita,et al.  Intrinsic connections in the macaque inferior temporal cortex , 1996, The Journal of comparative neurology.

[89]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions , 1996, The Journal of comparative neurology.

[90]  L. Squire,et al.  Structure and function of declarative and nondeclarative memory systems. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[91]  D. Oorschot Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods , 1996, The Journal of comparative neurology.

[92]  K. Rockland,et al.  Collateralized divergent feedback connections that target multiple cortical areas , 1996, The Journal of comparative neurology.

[93]  M. Deschenes,et al.  Axonal arborizations of corticostriatal and corticothalamic fibers arising from the second somatosensory area in the rat. , 1996, Cerebral cortex.

[94]  J. B. Levitt,et al.  Patterns of intrinsic and associational circuitry in monkey prefrontal cortex , 1996, The Journal of comparative neurology.

[95]  P. Goldman-Rakic Regional and cellular fractionation of working memory. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[96]  S. T. Sakai,et al.  Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): A double anterograde labeling study , 1996, The Journal of comparative neurology.

[97]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics , 1996, The Journal of comparative neurology.

[98]  Y. Smith,et al.  Efferent connections of the internal globus pallidus in the squirrel monkey: I. topography and synaptic organization of the pallidothalamic projection , 1997, The Journal of comparative neurology.

[99]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[100]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[101]  J. Cummings,et al.  Huntington's disease. , 1997, The Psychiatric clinics of North America.

[102]  A. Peters,et al.  The organization of pyramidal cells in area 18 of the rhesus monkey. , 1997, Cerebral cortex.

[103]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[104]  E. G. Jones,et al.  Toward an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus. , 1997, Journal of neurosurgery.

[105]  P S Goldman-Rakic,et al.  Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey , 1997, The Journal of comparative neurology.

[106]  I. Fujita,et al.  Distribution, morphology, and γ‐aminobutyric acid immunoreactivity of horizontally projecting neurons in the macaque inferior temporal cortex , 1998, The Journal of comparative neurology.

[107]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[108]  A. Thomson,et al.  Postsynaptic pyramidal target selection by descending layer III pyramidal axons: dual intracellular recordings and biocytin filling in slices of rat neocortex , 1998, Neuroscience.

[109]  M Steriade,et al.  Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[110]  E. G. Jones,et al.  Viewpoint: the core and matrix of thalamic organization , 1998, Neuroscience.

[111]  H. Kita,et al.  Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus , 1998, Neuroscience Research.

[112]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[113]  S. Cajal Texture of the nervous system of man and the vertebrates , 2000 .

[114]  K. Rockland,et al.  Single axon analysis of pulvinocortical connections to several visual areas in the Macaque , 1999, The Journal of comparative neurology.

[115]  Kenji Doya,et al.  What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? , 1999, Neural Networks.

[116]  L. Garey Brodmann's localisation in the cerebral cortex , 1999 .

[117]  U. Jürgens,et al.  Lack of cortico-striatal projections from the primary auditory cortex in the squirrel monkey , 1999, Brain Research.

[118]  G. Elston,et al.  Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey , 1999, The Journal of comparative neurology.

[119]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[120]  H. Kita,et al.  Excitatory Cortical Inputs to Pallidal Neurons Via the Subthalamic Nucleus in the Monkey , 2000 .

[121]  M. Young,et al.  Computational analysis of functional connectivity between areas of primate cerebral cortex. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[122]  P. Lavallée,et al.  Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. , 2000, The Journal of comparative neurology.

[123]  R. Burwell The Parahippocampal Region: Corticocortical Connectivity , 2000, Annals of the New York Academy of Sciences.

[124]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[125]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[126]  H. Eichenbaum A cortical–hippocampal system for declarative memory , 2000, Nature Reviews Neuroscience.

[127]  H. Barbas,et al.  The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. , 2000, Cerebral cortex.

[128]  T. Kaneko,et al.  Predominant information transfer from layer III pyramidal neurons to corticospinal neurons , 2000, The Journal of comparative neurology.

[129]  Nikolaus R. McFarland,et al.  Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque , 2001, The Journal of comparative neurology.

[130]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[131]  E M Callaway,et al.  Layer-Specific Input to Distinct Cell Types in Layer 6 of Monkey Primary Visual Cortex , 2001, The Journal of Neuroscience.

[132]  German Barrionuevo,et al.  Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex , 2001, The Journal of comparative neurology.

[133]  Distribution, morphology, and γ-aminobutyric acid immunoreactivity of horizontally projecting neurons in the macaque inferior temporal cortex , 2001 .

[134]  A. Parent,et al.  Two types of projection neurons in the internal pallidum of primates: Single‐axon tracing and three‐dimensional reconstruction , 2001, The Journal of comparative neurology.

[135]  L. Cauller,et al.  Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats , 2001, Brain Research.

[136]  Y. Shinoda,et al.  Thalamic terminal morphology and distribution of single corticothalamic axons originating from layers 5 and 6 of the cat motor cortex , 2001, The Journal of comparative neurology.

[137]  Nikolaus R. McFarland,et al.  Thalamic Relay Nuclei of the Basal Ganglia Form Both Reciprocal and Nonreciprocal Cortical Connections, Linking Multiple Frontal Cortical Areas , 2002, The Journal of Neuroscience.

[138]  J. Fuster Cortex and Mind , 2002 .

[139]  M. Herrero,et al.  Functional anatomy of thalamus and basal ganglia , 2002, Child’s Nervous System.

[140]  P. Rakic,et al.  Origin of GABAergic neurons in the human neocortex , 2002, Nature.

[141]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex , 2002, The Journal of comparative neurology.

[142]  Michael Grüninger,et al.  Introduction , 2002, CACM.

[143]  D. Buxhoeveden,et al.  The minicolumn hypothesis in neuroscience. , 2002, Brain : a journal of neurology.

[144]  D. Boussaoud,et al.  Projections of the claustrum to the primary motor, premotor, and prefrontal cortices in the macaque monkey , 2002, The Journal of comparative neurology.

[145]  E. Hirsch,et al.  Distribution and morphology of nigral axons projecting to the thalamus in primates , 2002, The Journal of comparative neurology.

[146]  M. Horne,et al.  Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: Volume and neuronal number for the output, internal relay, and striatal modulating nuclei , 2002, The Journal of comparative neurology.

[147]  M. L. Pucak,et al.  Dendritic morphology of callosal and ipsilateral projection neurons in monkey prefrontal cortex , 2002, Neuroscience.

[148]  Y. Smith,et al.  Nigral and pallidal inputs to functionally segregated thalamostriatal neurons in the centromedian/parafascicular intralaminar nuclear complex in monkey , 2002, The Journal of comparative neurology.

[149]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[150]  J. Voogd The human cerebellum , 2003, Journal of Chemical Neuroanatomy.

[151]  Margarete Delazer,et al.  Basal Ganglia Lesions and the Theory of Fronto-Subcortical Loops: Neuropsychological Findings in Two Patients with Left Caudate Lesions , 2003, Neurocase.

[152]  P. Strick,et al.  Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate , 2003, The Journal of Neuroscience.

[153]  S. Haber The primate basal ganglia: parallel and integrative networks , 2003, Journal of Chemical Neuroanatomy.

[154]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[155]  M. Tuszynski,et al.  Lesions of the Basal Forebrain Cholinergic System Impair Task Acquisition and Abolish Cortical Plasticity Associated with Motor Skill Learning , 2003, Neuron.

[156]  F. Ebner,et al.  Laminar organization of efferent cells in the parietal cortex of the Virginia opossum , 2004, Experimental Brain Research.

[157]  David Fitzpatrick,et al.  Neuroscience, 3rd ed. , 2004 .

[158]  L. Edelstein,et al.  The claustrum: a historical review of its anatomy, physiology, cytochemistry and functional significance. , 2004, Cellular and molecular biology.

[159]  F. Mauguière,et al.  Network organization of the connectivity between parietal area 7, posterior cingulate cortex and medial pulvinar nucleus: a double fluorescent tracer study in monkey , 2004, Experimental Brain Research.

[160]  K. Rockland,et al.  Some thoughts on cortical minicolumns , 2004, Experimental Brain Research.

[161]  E. Rouiller,et al.  The dual pattern of corticothalamic projection of the primary auditory cortex in macaque monkey , 2004, Neuroscience Letters.

[162]  O. D. Creutzfeldt,et al.  Topographical mapping of the thalamocortical projections in rodents and comparison with that in primates , 2004, Experimental Brain Research.

[163]  D. Pandya,et al.  Laminar origin of striatal and thalamic projections of the prefrontal cortex in rhesus monkeys , 2004, Experimental Brain Research.

[164]  H. Kuypers,et al.  Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey , 1977, Experimental Brain Research.

[165]  O. Creutzfeldt,et al.  The second, intralaminar thalamo-cortical projection system , 2004, Anatomy and Embryology.

[166]  Xiao-Jing Wang,et al.  Effects of Neuromodulation in a Cortical Network Model of Object Working Memory Dominated by Recurrent Inhibition , 2004, Journal of Computational Neuroscience.

[167]  Y. Smith,et al.  The thalamostriatal system: a highly specific network of the basal ganglia circuitry , 2004, Trends in Neurosciences.

[168]  Scott T. Grafton,et al.  Localization of grasp representations in humans by positron emission tomography , 1996, Experimental Brain Research.

[169]  A. Parent,et al.  The pallidofugal motor fiber system in primates. , 2004, Parkinsonism & related disorders.

[170]  S. Jacobson,et al.  The morphology and laminar distribution of cortico-pulvinar neurons in the Rhesus monkey , 1977, Experimental Brain Research.

[171]  L-S Jen Texture of the nervous system of man and the vertebrates, volume III , 2004 .

[172]  O. Creutzfeldt,et al.  The topology of the thalamo-cortical projections in the marmoset monkey (Callithrix jacchus) , 2004, Experimental Brain Research.

[173]  H. Braak,et al.  The pyramidal cells of Betz within the cingulate and precentral gigantopyramidal field in the human brain , 1976, Cell and Tissue Research.

[174]  C. Asanuma,et al.  GABAergic and pallidal terminals in the thalamic reticular nucleus of squirrel monkeys , 2004, Experimental Brain Research.

[175]  L. Squire Memory systems of the brain: A brief history and current perspective , 2004, Neurobiology of Learning and Memory.

[176]  André Parent,et al.  GABAergic interneurons in human subthalamic nucleus , 2005, Movement disorders : official journal of the Movement Disorder Society.

[177]  S. Bottjer Timing and Prediction The Code from BasalGanglia to Thalamus , 2005, Neuron.

[178]  Brenda Milner,et al.  The medial temporal-lobe amnesic syndrome. , 2005, The Psychiatric clinics of North America.

[179]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[180]  M. Berger,et al.  High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. , 2005, Journal of neurophysiology.

[181]  C. Koch,et al.  What is the function of the claustrum? , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[182]  David G. Jones,et al.  Development of human visual cortex: a balance between excitatory and inhibitory plasticity mechanisms. , 2005, Developmental psychobiology.

[183]  Lauterbach Ec The neuropsychiatry of Parkinson's disease. , 2005, Minerva medica.

[184]  G. Striedter Principles of brain evolution. , 2005 .

[185]  A. Parent,et al.  The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[186]  Farran Briggs,et al.  Laminar patterns of local excitatory input to layer 5 neurons in macaque primary visual cortex. , 2005, Cerebral cortex.

[187]  A. Parent,et al.  Single‐axon tracing and three‐dimensional reconstruction of centre médian‐parafascicular thalamic neurons in primates , 2005, The Journal of comparative neurology.

[188]  A. Zaitsev,et al.  Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. , 2005, Cerebral cortex.

[189]  H. Barbas,et al.  Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey , 2005, BMC Neuroscience.

[190]  R. Lemon,et al.  Comparing the function of the corticospinal system in different species: Organizational differences for motor specialization? , 2005, Muscle & nerve.

[191]  H. Barbas,et al.  Relationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey. , 2005, Cerebral cortex.

[192]  D. V. van Essen,et al.  Corticocortical and thalamocortical information flow in the primate visual system. , 2005, Progress in brain research.

[193]  M. Catani,et al.  The rises and falls of disconnection syndromes. , 2005, Brain : a journal of neurology.

[194]  S. Hestrin,et al.  Electrical synapses define networks of neocortical GABAergic neurons , 2005, Trends in Neurosciences.

[195]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[196]  Henry Kennedy,et al.  The development of cortical connections , 2006, The European journal of neuroscience.

[197]  Y. Kawaguchi,et al.  Recurrent Connection Patterns of Corticostriatal Pyramidal Cells in Frontal Cortex , 2006, The Journal of Neuroscience.

[198]  M. Steriade Grouping of brain rhythms in corticothalamic systems , 2006, Neuroscience.

[199]  J. Dostrovsky,et al.  The Motor Thalamus in Neurosurgery , 2006, Neurosurgery.

[200]  Lennart Heimer,et al.  Neuroanatomical tract-tracing 3 : molecules, neurons, and systems , 2006 .

[201]  H. Barbas,et al.  Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure , 2006, The European journal of neuroscience.

[202]  Martin Parent,et al.  Single‐axon tracing study of corticostriatal projections arising from primary motor cortex in primates , 2006, The Journal of comparative neurology.

[203]  Z. Molnár,et al.  Towards the classification of subpopulations of layer V pyramidal projection neurons , 2006, Neuroscience Research.

[204]  H. Barbas,et al.  Prefrontal Projections to the Thalamic Reticular Nucleus form a Unique Circuit for Attentional Mechanisms , 2006, The Journal of Neuroscience.

[205]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[206]  E. Hirsch,et al.  Parafascicular nucleus projection to the extrastriatal basal ganglia in monkeys , 2006, Neuroreport.

[207]  H. Kennedy,et al.  Comparative aspects of cerebral cortical development , 2006, The European journal of neuroscience.

[208]  N. Ramnani The primate cortico-cerebellar system: anatomy and function , 2006, Nature Reviews Neuroscience.

[209]  Robert T Knight Neuroscience. Neural networks debunk phrenology. , 2007, Science.

[210]  Simon B. Eickhoff,et al.  Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex , 2007, NeuroImage.

[211]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[212]  J. W. Rudy,et al.  The hippocampal indexing theory and episodic memory: Updating the index , 2007, Hippocampus.

[213]  Paul Apicella,et al.  Leading tonically active neurons of the striatum from reward detection to context recognition , 2007, Trends in Neurosciences.

[214]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: III. Cortical efferents , 2003, The Journal of comparative neurology.

[215]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[216]  Elizabeth Gould,et al.  How widespread is adult neurogenesis in mammals? , 2007, Nature Reviews Neuroscience.

[217]  Lazaros C. Triarhou,et al.  A Proposed Number System for the 107 Cortical Areas of Economo and Koskinas, and Brodmann Area Correlations , 2007, Stereotactic and Functional Neurosurgery.

[218]  Stephanie Clarke,et al.  Laminar specificity of intrinsic connections in Broca's area. , 2007, Cerebral cortex.

[219]  Patrick R Hof,et al.  Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. , 2007, Brain : a journal of neurology.

[220]  Rolf Kötter,et al.  Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac Database , 2007, Neuroinformatics.

[221]  R. Knight Neural Networks Debunk Phrenology , 2007, Science.

[222]  K. Rockland,et al.  Comparative analysis of layer-specific genes in Mammalian neocortex. , 2007, Cerebral cortex.

[223]  R. Luján Fiber Pathways of the Brain, J.D. Schmahmann, D.N. Pandya (Eds.). Oxford University Press (2006), ISBN: 0-19-510423-4 , 2008 .

[224]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[225]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[226]  T. Paus,et al.  Brain size and folding of the human cerebral cortex. , 2008, Cerebral cortex.

[227]  Eric E. Smith,et al.  Cerebral White Matter , 2008, Annals of the New York Academy of Sciences.

[228]  I. Hashimoto,et al.  Impulse Propagation along Thalamocortical Fibers Can Be Detected Magnetically outside the Human Brain , 2008, The Journal of Neuroscience.

[229]  A. Kummer,et al.  Neuropsychiatry of Parkinson's disease. , 2009, Arquivos de neuro-psiquiatria.

[230]  Richard L. Lieber,et al.  Skeletal Muscle Structure, Function, and Plasticity , 2009 .

[231]  F. Fujiyama,et al.  Single Nigrostriatal Dopaminergic Neurons Form Widely Spread and Highly Dense Axonal Arborizations in the Neostriatum , 2009, The Journal of Neuroscience.

[232]  Mark J Rapoport,et al.  Evaluating the affective component of the cerebellar cognitive affective syndrome. , 2009, The Journal of neuropsychiatry and clinical neurosciences.

[233]  A. Zaitsev,et al.  Interneuron diversity in layers 2-3 of monkey prefrontal cortex. , 2009, Cerebral cortex.

[234]  J. Tepper,et al.  Basal ganglia control of substantia nigra dopaminergic neurons. , 2009, Journal of neural transmission. Supplementum.

[235]  Fumitaka Kimura,et al.  Myelination and Isochronicity in Neural Networks , 2009, Front. Neuroanat..

[236]  A unified anatomical theory and computational model of cognitive information processing in the mammalian brain and the introduction of DNA reco codes , 2009 .

[237]  F. Zhou,et al.  An Ultra-Short Dopamine Pathway Regulates Basal Ganglia Output , 2009, The Journal of Neuroscience.

[238]  Ethan S. Bromberg-Martin,et al.  Dopamine in Motivational Control: Rewarding, Aversive, and Alerting , 2010, Neuron.

[239]  J. O’Neill,et al.  Play it again: reactivation of waking experience and memory , 2010, Trends in Neurosciences.

[240]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[241]  Olaf Sporns,et al.  MR connectomics: Principles and challenges , 2010, Journal of Neuroscience Methods.

[242]  F. Fujiyama,et al.  Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron‐tracing study using a viral vector , 2011, The European journal of neuroscience.

[243]  Jun Lu,et al.  Reassessment of the structural basis of the ascending arousal system , 2011, The Journal of comparative neurology.

[244]  Timothy O. Laumann,et al.  Informatics and Data Mining Tools and Strategies for the Human Connectome Project , 2011, Front. Neuroinform..

[245]  C. Gerfen,et al.  Modulation of striatal projection systems by dopamine. , 2011, Annual review of neuroscience.