Visualizing multidimensional cancer genomics data

Cancer genomics projects employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Examples include projects carried out by the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). A crucial step in the extraction of knowledge from the data is the exploration by experts of the different alterations, as well as the multiple relationships between them. To that end, the use of intuitive visualization tools that can integrate different types of alterations with clinical data is essential to the field of cancer genomics. Here, we review effective and common visualization techniques for exploring oncogenomics data and discuss a selection of tools that allow researchers to effectively visualize multidimensional oncogenomics datasets. The review covers visualization methods employed by tools such as Circos, Gitools, the Integrative Genomics Viewer, Cytoscape, Savant Genome Browser, StratomeX and platforms such as cBio Cancer Genomics Portal, IntOGen, the UCSC Cancer Genomics Browser, the Regulome Explorer and the Cancer Genome Workbench.

[1]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[2]  S. Powers,et al.  From cancer genomes to oncogenic drivers, tumour dependencies and therapeutic targets , 2012, Nature Reviews Cancer.

[3]  M. Stratton,et al.  The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website , 2004, British Journal of Cancer.

[4]  A. Gonzalez-Perez,et al.  Functional impact bias reveals cancer drivers , 2012, Nucleic acids research.

[5]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[6]  David H. Laidlaw,et al.  Online Submission ID : 1199 Gremlin : An Interactive Visualization Model for Analyzing Genomic Rearrangements , 2010 .

[7]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[8]  R. Shoemaker The NCI60 human tumour cell line anticancer drug screen , 2006, Nature Reviews Cancer.

[9]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[10]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[11]  Dieter Schmalstieg,et al.  StratomeX: Visual Analysis of Large‐Scale Heterogeneous Genomics Data for Cancer Subtype Characterization , 2012, Comput. Graph. Forum.

[12]  Markus J. van Roosmalen,et al.  Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer , 2011, Genome Biology.

[13]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[14]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Paul Medvedev,et al.  Computational methods for discovering structural variation with next-generation sequencing , 2009, Nature Methods.

[16]  Gary D. Bader,et al.  Cytoscape Web: an interactive web-based network browser , 2010, Bioinform..

[17]  Joshua F. McMichael,et al.  Genome Remodeling in a Basal-like Breast Cancer Metastasis and Xenograft , 2010, Nature.

[18]  Oscar M. Rueda and Ramon Diaz-Uriarte Finding Recurrent Copy Number Alteration Regions: A Review of Methods , 2010 .

[19]  Eli Upfal,et al.  De Novo Discovery of Mutated Driver Pathways in Cancer , 2011, RECOMB.

[20]  Benjamin J. Raphael,et al.  De novo discovery of mutated driver pathways in cancer , 2011 .

[21]  N. López-Bigas,et al.  Sample-level enrichment analysis unravels shared stress phenotypes among multiple cancer types , 2012, Genome Medicine.

[22]  Atul J. Butte,et al.  Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges , 2012, PLoS Comput. Biol..

[23]  C. Sander,et al.  Automated Network Analysis Identifies Core Pathways in Glioblastoma , 2010, PloS one.

[24]  I. Dubchak,et al.  Visualizing genomes: techniques and challenges , 2010, Nature Methods.

[25]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[26]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[27]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[28]  J. Uhm Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2009 .

[29]  Joshua F. McMichael,et al.  Whole Genome Analysis Informs Breast Cancer Response to Aromatase Inhibition , 2012, Nature.

[30]  C. Sander,et al.  Mutual exclusivity analysis identifies oncogenic network modules. , 2012, Genome research.

[31]  L. Stein,et al.  A human functional protein interaction network and its application to cancer data analysis , 2010, Genome Biology.

[32]  E. Barillot,et al.  Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays , 2009, Genome Biology.

[33]  Dieter Schmalstieg,et al.  Caleydo: connecting pathways and gene expression , 2009, Bioinform..

[34]  Mary Goldman,et al.  The UCSC cancer genomics browser: update 2011 , 2010, Nucleic Acids Res..

[35]  Bang Wong,et al.  Points of view: Representing genomic structural variation , 2012, Nature Methods.

[36]  J. Nevins,et al.  Linking oncogenic pathways with therapeutic opportunities , 2006, Nature Reviews Cancer.

[37]  Lincoln Stein,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Res..

[38]  Céline Rouveirol,et al.  VAMP: Visualization and analysis of array-CGH, transcriptome and other molecular profiles , 2006, Bioinform..

[39]  D. Koller,et al.  A module map showing conditional activity of expression modules in cancer , 2004, Nature Genetics.

[40]  Junjun Zhang,et al.  BioMart Central Portal—unified access to biological data , 2009, Nucleic Acids Res..

[41]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[42]  A. Nobel,et al.  Supervised risk predictor of breast cancer based on intrinsic subtypes. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  Eli Upfal,et al.  Algorithms for Detecting Significantly Mutated Pathways in Cancer , 2010, RECOMB.

[44]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[45]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[46]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[47]  P. Laird,et al.  Discovery of multi-dimensional modules by integrative analysis of cancer genomic data , 2012, Nucleic acids research.

[48]  Sampsa Hautaniemi,et al.  Comparative analysis of algorithms for integration of copy number and expression data , 2012, Nature Methods.

[49]  Dario Strbenac,et al.  Savant Genome Browser 2: visualization and analysis for population-scale genomics , 2012, Nucleic Acids Res..

[50]  E. Birney,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Research.

[51]  D. Pe’er,et al.  An Integrated Approach to Uncover Drivers of Cancer , 2010, Cell.

[52]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[53]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[54]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[55]  Bang Wong,et al.  Visualizing biological data—now and in the future , 2010, Nature Methods.

[56]  Ramón Díaz-Uriarte,et al.  waviCGH: a web application for the analysis and visualization of genomic copy number alterations , 2010, Nucleic Acids Res..

[57]  Subha Madhavan,et al.  The Cancer Genome Workbench: Identifying and Visualizing Complex Genetic Alterations in Tumors , 2010 .

[58]  S. Gabriel,et al.  High-throughput oncogene mutation profiling in human cancer , 2007, Nature Genetics.

[59]  Matthew A. Hibbs,et al.  Visualization of omics data for systems biology , 2010, Nature Methods.

[60]  David Warde-Farley,et al.  GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function , 2008, Genome Biology.

[61]  Nuria Lopez-Bigas,et al.  IntOGen: integration and data mining of multidimensional oncogenomic data , 2010, Nature Methods.

[62]  Nuria Lopez-Bigas,et al.  Gitools: Analysis and Visualisation of Genomic Data Using Interactive Heat-Maps , 2011, PloS one.

[63]  Guy Cavet,et al.  Comment on "The Consensus Coding Sequences of Human Breast and Colorectal Cancers" , 2007, Science.

[64]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[65]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[66]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[67]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[68]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[69]  R. Bernards,et al.  Enabling personalized cancer medicine through analysis of gene-expression patterns , 2008, Nature.

[70]  T. Hampton,et al.  The Cancer Genome Atlas , 2020, Indian Journal of Medical and Paediatric Oncology.

[71]  David Tamborero,et al.  Oncodrive-CIS: A Method to Reveal Likely Driver Genes Based on the Impact of Their Copy Number Changes on Expression , 2013, PloS one.

[72]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[73]  Igor Jurisica,et al.  NAViGaTOR: Network Analysis, Visualization and Graphing Toronto , 2009, Bioinform..

[74]  Mary Goldman,et al.  The UCSC Cancer Genomics Browser: update 2015 , 2014, Nucleic Acids Res..

[75]  D. Cook,et al.  ggbio: an R package for extending the grammar of graphics for genomic data , 2012, Genome Biology.

[76]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Ira M. Hall,et al.  Characterizing complex structural variation in germline and somatic genomes. , 2012, Trends in genetics : TIG.

[78]  Chris T. A. Evelo,et al.  WikiPathways: building research communities on biological pathways , 2011, Nucleic Acids Res..