Bilipschitz snowflakes and metrics of negative type

We show that there exists a metric space (X,d) such that (X,√d) admits a bilipschitz embedding into L2, but (X,d) does not admit an equivalent metric of negative type. In fact, we exhibit a strong quantitative bound: There are n-point subsets Yn ⊆ X such that mapping (Yn, d) to a metric of negative type requires distortion ~Ω(log n)1/4. In a formal sense, this is the first lower bound specifically against bilipschitz embeddings into negative-type metrics, and therefore unlike other lower bounds, ours cannot be derived from a 1-dimensional Poincare inequality. This answers an open question about the strength of strong vs. weak triangle inequalities in a number of semi-definite programs. Our construction sheds light on the power of various notions of "dual flows" that arise in algorithms for approximating the Sparsest Cut problem. It also has other interesting implications for bilipschitz embeddings of finite metric spaces.

[1]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into 1 (Extended Abstract) , 2005 .

[2]  James R. Lee,et al.  On the geometry of graphs with a forbidden minor , 2009, STOC '09.

[3]  Yuval Rabani,et al.  Improved lower bounds for embeddings into L1 , 2006, SODA '06.

[4]  Anupam Gupta,et al.  Cuts, Trees and ℓ1-Embeddings of Graphs* , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[5]  James R. Lee,et al.  On distance scales, embeddings, and efficient relaxations of the cut cone , 2005, SODA '05.

[6]  Jonah Sherman,et al.  Breaking the Multicommodity Flow Barrier for O(vlog n)-Approximations to Sparsest Cut , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[7]  Patrice Assouad Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .

[8]  Nathan Linial Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.

[9]  Anupam Gupta,et al.  Cuts, Trees and ℓ1-Embeddings of Graphs* , 2004, Comb..

[10]  James R. Lee,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[11]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[12]  Sanjeev Arora,et al.  O(/spl radic/log n) approximation to SPARSEST CUT in O/spl tilde/(n/sup 2/) time , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[13]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[14]  P. Enflo On the nonexistence of uniform homeomorphisms betweenLp-spaces , 1970 .

[15]  Elad Hazan,et al.  O(/spl radic/log n) approximation to SPARSEST CUT in O/spl tilde/(n/sup 2/) time , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Nisheeth K. Vishnoi,et al.  Integrality gaps for sparsest cut and minimum linear arrangement problems , 2006, STOC '06.

[17]  Sanjeev Arora,et al.  0(sqrt (log n)) Approximation to SPARSEST CUT in Õ(n2) Time , 2004, FOCS.

[18]  Bruce Kleiner,et al.  On the differentiability of Lispschitz maps from metric measure spaces to Banach spaces , 2006 .

[19]  Prasad Raghavendra,et al.  Coarse Differentiation and Multi-flows in Planar Graphs , 2007, APPROX-RANDOM.

[20]  Jirí Matousek,et al.  Low-Distortion Embeddings of Finite Metric Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[21]  James R. Lee,et al.  Metric Structures in L1: Dimension, Snowflakes, and Average Distortion , 2004, LATIN.

[22]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[23]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[24]  Bruce Kleiner,et al.  Metric differentiation, monotonicity and maps to L1 , 2009, 0907.3295.

[25]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[26]  Robert Krauthgamer,et al.  Measured Descent: A New Embedding Method for Finite Metrics , 2004, FOCS.

[27]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[28]  Assaf Naor,et al.  . 20 24 v 2 [ cs . D S ] 18 N ov 2 00 9 A ( log n ) Ω ( 1 ) integrality gap for the Sparsest Cut SDP , 2009 .

[29]  Anupam Gupta,et al.  Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.

[30]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[31]  B. M. Fulk MATH , 1992 .

[32]  James R. Lee,et al.  Lp metrics on the Heisenberg group and the Goemans-Linial conjecture , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[33]  Y. Rabani,et al.  Improved lower bounds for embeddings into L 1 , 2006, SODA 2006.

[34]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[35]  Amit Agarwal,et al.  O(√log n) approximation algorithms for min UnCut, min 2CNF deletion, and directed cut problems , 2005, STOC '05.

[36]  David Fisher,et al.  Quasi-isometries and rigidity of solvable groups , 2005 .

[37]  Konstantin Makarychev,et al.  How to Play Unique Games Using Embeddings , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[38]  George Karakostas,et al.  A better approximation ratio for the vertex cover problem , 2005, TALG.

[39]  Alexandra Kolla,et al.  Sparsest Cut on Quotients of the Hypercube , 2011, CATS.

[40]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[41]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[42]  Bruce Kleiner,et al.  Generalized differentiation and bi-Lipschitz nonembedding in L1⁎ , 2006 .

[43]  James R. Lee,et al.  Metric structures in L1: dimension, snowflakes, and average distortion , 2005, Eur. J. Comb..

[44]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[45]  A. Floren,et al.  ' " ' " ' " . " ' " " " " " ' " ' " " " " " : ' " 1 , 2001 .

[46]  J. Cheeger,et al.  Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.

[47]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[48]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[49]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[50]  Assaf Naor,et al.  A $(\log n)^{\Omega(1)}$ Integrality Gap for the Sparsest Cut SDP , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.