A complexity reducing transformation in algebraic list decoding of Reed-Solomon codes

The main computational steps in algebraic soft decoding, as well as Sudan-type list decoding, of Reed-Solomon codes are interpolation and factorization. A series of transformations is given for the interpolation problem that arises in these decoding algorithms. These transformations reduce the space and time complexity to a small fraction of the complexity of the original interpolation problem. A factorization procedure that applies directly to the reduced interpolation problem is also presented.

[1]  Naresh R. Shanbhag,et al.  VLSI architectures for soft-decision decoding of Reed-Solomon codes , 2011, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[2]  Alexander Vardy,et al.  Efficient interpolation and factorization in algebraic soft-decision decoding of reed-solonion codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[3]  Lancelot Pecquet Décodage en liste des codes géométriques , 2001 .

[4]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[5]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[6]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[7]  Tom Høholdt,et al.  Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .

[8]  A. Vardy,et al.  Multiplicity assignments for algebraic soft-decoding of reed-solomon codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[9]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[10]  I. Shafarevich Basic algebraic geometry , 1974 .

[11]  Frank R. Kschischang,et al.  Towards a VLSI Architecture for Interpolation-Based Soft-Decision Reed-Solomon Decoders , 2005, J. VLSI Signal Process..

[12]  R. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).