A unified framework for event summarization and rare event detection

In this paper, we have proposed an unified framework for event summarization and rare event detection and presented the graph-structure learning and editing method to solve these problems efficiently. The experimental results demonstrated that the proposed method outperformed conventional algorithms in complex and crowded public scenes by exploiting and utilizing causality, frequency, and significance of relations of events.

[1]  Shaogang Gong,et al.  Video Behavior Profiling for Anomaly Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Nuno Vasconcelos,et al.  Anomaly detection in crowded scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Sanja Fidler,et al.  Holistic Scene Understanding for 3D Object Detection with RGBD Cameras , 2013, 2013 IEEE International Conference on Computer Vision.

[4]  Louis Kratz,et al.  Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models , 2009, CVPR.

[5]  J. Hartmanis Computers and Intractability: A Guide to the Theory of NP-Completeness (Michael R. Garey and David S. Johnson) , 1982 .

[6]  Jean-Marc Odobez,et al.  Temporal Analysis of Motif Mixtures Using Dirichlet Processes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Björn Ommer,et al.  Video parsing for abnormality detection , 2011, 2011 International Conference on Computer Vision.

[8]  Minsu Cho,et al.  Reweighted Random Walks for Graph Matching , 2010, ECCV.

[9]  William Brendel,et al.  Learning spatiotemporal graphs of human activities , 2011, 2011 International Conference on Computer Vision.

[10]  Matti Nykänen,et al.  Efficient Discovery of Statistically Significant Association Rules , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[11]  Tao Xiang,et al.  Delta-Dual Hierarchical Dirichlet Processes: A pragmatic abnormal behaviour detector , 2011, 2011 International Conference on Computer Vision.

[12]  Ehud Rivlin,et al.  Robust Real-Time Unusual Event Detection using Multiple Fixed-Location Monitors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Luc Van Gool,et al.  What's going on? Discovering spatio-temporal dependencies in dynamic scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[15]  Marco Grzegorczyk,et al.  Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move , 2008, Machine Learning.

[16]  Jianbo Shi,et al.  Detecting unusual activity in video , 2004, CVPR 2004.

[17]  Mubarak Shah,et al.  Automated Visual Surveillance in Realistic Scenarios , 2007, IEEE MultiMedia.

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[20]  Tieniu Tan,et al.  A system for learning statistical motion patterns , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Fei-Fei Li,et al.  Online detection of unusual events in videos via dynamic sparse coding , 2011, CVPR 2011.

[22]  James M. Rehg,et al.  Temporal causality for the analysis of visual events , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Larry S. Davis,et al.  AVSS 2011 demo session: A large-scale benchmark dataset for event recognition in surveillance video , 2011, AVSS.

[24]  Larry S. Davis,et al.  Understanding videos, constructing plots learning a visually grounded storyline model from annotated videos , 2009, CVPR.

[25]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[26]  Jean-Marc Odobez,et al.  Bridging the past, present and future: Modeling scene activities from event relationships and global rules , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Cewu Lu,et al.  Abnormal Event Detection at 150 FPS in MATLAB , 2013, 2013 IEEE International Conference on Computer Vision.

[28]  Mubarak Shah,et al.  Tracking across multiple cameras with disjoint views , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[29]  Jean Ponce,et al.  Learning Graphs to Match , 2013, 2013 IEEE International Conference on Computer Vision.

[30]  Patrick Pérez,et al.  Cross-View Action Recognition from Temporal Self-similarities , 2008, ECCV.

[31]  Yun Jiang,et al.  Infinite Latent Conditional Random Fields for Modeling Environments through Humans , 2013, Robotics: Science and Systems.

[32]  Bohyung Han,et al.  Scenario-based video event recognition by constraint flow , 2011, CVPR 2011.

[33]  Shaogang Gong,et al.  Multi-camera activity correlation analysis , 2009, CVPR.

[34]  Peter Willett,et al.  Maximum common subgraph isomorphism algorithms for the matching of chemical structures , 2002, J. Comput. Aided Mol. Des..

[35]  Junsong Yuan,et al.  Sparse reconstruction cost for abnormal event detection , 2011, CVPR 2011.

[36]  W. Eric L. Grimson,et al.  Correspondence-Free Activity Analysis and Scene Modeling in Multiple Camera Views , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  K. Grauman,et al.  Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Mubarak Shah,et al.  Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Kristen Grauman,et al.  Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates , 2009, CVPR.

[40]  Michal Irani,et al.  Detecting Irregularities in Images and in Video , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[41]  Shaogang Gong,et al.  A Markov Clustering Topic Model for mining behaviour in video , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[42]  Junseok Kwon,et al.  A unified framework for event summarization and rare event detection , 2012, CVPR.

[43]  Junseok Kwon,et al.  Simultaneous video synchronization and rare event detection via Cross-Entropy Monte Carlo optimization , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[44]  Hema Swetha Koppula,et al.  Learning Spatio-Temporal Structure from RGB-D Videos for Human Activity Detection and Anticipation , 2013, ICML.

[45]  Yong Jae Lee,et al.  Discovering important people and objects for egocentric video summarization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  B. S. Manjunath,et al.  Multicamera video summarization and anomaly detection from activity motifs , 2014, TOSN.

[47]  Yael Pritch,et al.  Webcam Synopsis: Peeking Around the World , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[48]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[49]  Qingshan Liu,et al.  Video object segmentation by hypergraph cut , 2009, CVPR.

[50]  W. Eric L. Grimson,et al.  Unsupervised Activity Perception by Hierarchical Bayesian Models , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Takeo Kanade,et al.  Introduction to the Special Section on Video Surveillance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[53]  Mubarak Shah,et al.  Recognizing Complex Events Using Large Margin Joint Low-Level Event Model , 2012, ECCV.

[54]  Antonio Torralba,et al.  A Data-Driven Approach for Event Prediction , 2010, ECCV.

[55]  Hichem Sahbi,et al.  Directed Acyclic Graph Kernels for Action Recognition , 2013, 2013 IEEE International Conference on Computer Vision.