Optimizing walking controllers for uncertain inputs and environments

We introduce methods for optimizing physics-based walking controllers for robustness to uncertainty. Many unknown factors, such as external forces, control torques, and user control inputs, cannot be known in advance and must be treated as uncertain. These variables are represented with probability distributions, and a return function scores the desirability of a single motion. Controller optimization entails maximizing the expected value of the return, which is computed by Monte Carlo methods. We demonstrate examples with different sources of uncertainty and task constraints. Optimizing control strategies under uncertainty increases robustness and produces natural variations in style.

[1]  David J. Fleet,et al.  Optimizing walking controllers , 2009, ACM Trans. Graph..

[2]  Philippe Beaudoin,et al.  Robust task-based control policies for physics-based characters , 2009, ACM Trans. Graph..

[3]  Zoran Popovic,et al.  Compact character controllers , 2009, ACM Trans. Graph..

[4]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[5]  Katie Byl,et al.  Metastable Walking Machines , 2009, Int. J. Robotics Res..

[6]  Hans-Peter Seidel,et al.  A Statistical Model of Human Pose and Body Shape , 2009, Comput. Graph. Forum.

[7]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[8]  Matthias Zwicker,et al.  Real-time planning for parameterized human motion , 2008, SCA '08.

[9]  Konrad Paul Kording,et al.  Decision Theory: What "Should" the Nervous System Do? , 2007, Science.

[10]  Z. Popovic,et al.  Near-optimal character animation with continuous control , 2007, ACM Trans. Graph..

[11]  Kwang Won Sok,et al.  Simulating biped behaviors from human motion data , 2007, ACM Trans. Graph..

[12]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[13]  Nancy S. Pollard,et al.  To appear in the ACM SIGGRAPH conference proceedings Responsive Characters from Motion Fragments , 2022 .

[14]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[15]  Pieter Abbeel,et al.  An Application of Reinforcement Learning to Aerobatic Helicopter Flight , 2006, NIPS.

[16]  Michiel van de Panne,et al.  Synthesis of Controllers for Stylized Planar Bipedal Walking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[17]  H. Sebastian Seung,et al.  Stochastic policy gradient reinforcement learning on a simple 3D biped , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[18]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[19]  Jehee Lee,et al.  Precomputing avatar behavior from human motion data , 2004, SCA '04.

[20]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[21]  Kelvin E. Jones,et al.  The scaling of motor noise with muscle strength and motor unit number in humans , 2004, Experimental Brain Research.

[22]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[23]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[24]  Michael I. Jordan,et al.  PEGASUS: A policy search method for large MDPs and POMDPs , 2000, UAI.

[25]  D. Wolpert,et al.  Signal-dependent noise determines motor planning , 1998, Nature.

[26]  Geoffrey E. Hinton,et al.  NeuroAnimator: fast neural network emulation and control of physics-based models , 1998, SIGGRAPH.

[27]  Demetri Terzopoulos,et al.  Automated learning of muscle-actuated locomotion through control abstraction , 1995, SIGGRAPH.

[28]  Karl Sims,et al.  Evolving virtual creatures , 1994, SIGGRAPH.

[29]  Michiel van de Panne,et al.  Sensor-actuator networks , 1993, SIGGRAPH.

[30]  L. Pinneo On noise in the nervous system. , 1966, Psychological review.

[31]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[32]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[33]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[34]  C. N Bouza,et al.  Spall, J.C. Introduction to stochastic search and optimization. Estimation, simulation and control. Wiley Interscience Series in Discrete Mathematics and Optimization, 2003 , 2004 .

[35]  Michiel van de Panne,et al.  Guided Optimization for Balanced Locomotion , 1995 .