Adaptive filtering enhances information transmission in visual cortex

Sensory neuroscience seeks to understand how the brain encodes natural environments. However, neural coding has largely been studied using simplified stimuli. In order to assess whether the brain's coding strategy depends on the stimulus ensemble, we apply a new information-theoretic method that allows unbiased calculation of neural filters (receptive fields) from responses to natural scenes or other complex signals with strong multipoint correlations. In the cat primary visual cortex we compare responses to natural inputs with those to noise inputs matched for luminance and contrast. We find that neural filters adaptively change with the input ensemble so as to increase the information carried by the neural response about the filtered stimulus. Adaptation affects the spatial frequency composition of the filter, enhancing sensitivity to under-represented frequencies in agreement with optimal encoding arguments. Adaptation occurs over 40 s to many minutes, longer than most previously reported forms of adaptation.

[1]  R. Masland,et al.  Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells , 2001, Nature Neuroscience.

[2]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[3]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[4]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[5]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[7]  John Harris,et al.  Vision: Coding and efficiency , 1994, Image Vis. Comput..

[8]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[9]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[10]  E. Chichilnisky,et al.  Adaptation to Temporal Contrast in Primate and Salamander Retina , 2001, The Journal of Neuroscience.

[11]  J. Atick,et al.  STATISTICS OF NATURAL TIME-VARYING IMAGES , 1995 .

[12]  L. Maffei,et al.  Neural Correlate of Perceptual Adaptation to Gratings , 1973, Science.

[13]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[14]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[15]  C. Blakemore,et al.  Adaptation to spatial stimuli. , 1969, The Journal of physiology.

[16]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[17]  L. Palmer,et al.  Contrast-dependent spatial summation in the lateral geniculate nucleus and retina of the cat. , 2004, Journal of neurophysiology.

[18]  C. Schreiner,et al.  Short-term adaptation of auditory receptive fields to dynamic stimuli. , 2004, Journal of neurophysiology.

[19]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[20]  D. G. Albrecht,et al.  Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. , 1984, The Journal of physiology.

[21]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[22]  Ben Willmore,et al.  The Receptive-Field Organization of Simple Cells in Primary Visual Cortex of Ferrets under Natural Scene Stimulation , 2003, The Journal of Neuroscience.

[23]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[24]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the temporal domain , 1989, Visual Neuroscience.

[25]  J. van Loon Network , 2006 .

[26]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[27]  R. Shapley,et al.  The contrast gain control of the cat retina , 1979, Vision Research.

[28]  K. Sen,et al.  Spectral-temporal Receptive Fields of Nonlinear Auditory Neurons Obtained Using Natural Sounds , 2022 .

[29]  A. A Emondi,et al.  Tracking neurons recorded from tetrodes across time , 2004, Journal of Neuroscience Methods.

[30]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[31]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[32]  Martin J. Wainwright,et al.  Visual adaptation as optimal information transmission , 1999, Vision Research.

[33]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[34]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[35]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[36]  P. Lennie,et al.  Profound Contrast Adaptation Early in the Visual Pathway , 2004, Neuron.

[37]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[38]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[39]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[40]  N. C. Singh,et al.  Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli , 2001 .

[41]  Robert Shapley,et al.  Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. , 2002, Journal of vision.

[42]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[43]  Feng Qi Han,et al.  Cortical Sensitivity to Visual Features in Natural Scenes , 2005, PLoS biology.

[44]  J. Gallant,et al.  Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons , 2004, The Journal of Neuroscience.

[45]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[46]  J. Movshon,et al.  Adaptation changes the direction tuning of macaque MT neurons , 2004, Nature Neuroscience.

[47]  Richard Durbin,et al.  The computing neuron , 1989 .

[48]  I. Morgan,et al.  Progress in retinal research Vol. 5,N. Osborne andG. Chader (eds). Pergamon Press, Oxford (1985). 349 pp. , 1987, Neuroscience.

[49]  R. Shapley,et al.  Area (mt) Spatial Summation, End Inhibition and Side Inhibition in the Middle Temporal Visual Adaptation Complex Cells Increase Their Phase Sensitivity at Low Contrasts and following Dependence of Response Properties on Sparse Connectivity in a Spiking Neuron Model Of , 2022 .