A statistical method (cross-validation) for bone loss region detection after spaceflight

Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes.

[1]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[2]  Karl H. Wolf,et al.  Comparative review , 2011, J. Documentation.

[3]  Jean-Baptiste Poline,et al.  Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses , 2007, NeuroImage.

[4]  John Kornak,et al.  Identify fracture-critical regions inside the proximal femur using statistical parametric mapping. , 2009, Bone.

[5]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[6]  Karl J. Friston,et al.  Detecting Activations in PET and fMRI: Levels of Inference and Power , 1996, NeuroImage.

[7]  E. Bullmore,et al.  Permutation tests for factorially designed neuroimaging experiments , 2004, Human brain mapping.

[8]  John Kornak,et al.  Bone fracture risk estimation based on image similarity. , 2009, Bone.

[9]  Nava Rubin,et al.  Cluster-based analysis of FMRI data , 2006, NeuroImage.

[10]  H. Genant,et al.  Cortical and Trabecular Bone Mineral Loss From the Spine and Hip in Long‐Duration Spaceflight , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[11]  Thomas E. Nichols,et al.  Controlling the familywise error rate in functional neuroimaging: a comparative review , 2003, Statistical methods in medical research.

[12]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[13]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[14]  Richard D. Alexander,et al.  A Comparative Review , 1968 .

[15]  T. Lang,et al.  Adaptation of the Proximal Femur to Skeletal Reloading After Long‐Duration Spaceflight , 2006, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[16]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[17]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Wenjun Li,et al.  Voxel-based modeling and quantification of the proximal femur using inter-subject registration of quantitative CT images. , 2007, Bone.

[19]  Thomas E. Nichols,et al.  Validating cluster size inference: random field and permutation methods , 2003, NeuroImage.

[20]  J. Franklin,et al.  The elements of statistical learning: data mining, inference and prediction , 2005 .

[21]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[22]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[23]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[24]  Wenjun Li,et al.  Automated registration of hip and spine for longitudinal QCT studies: integration with 3D densitometric and structural analysis. , 2006, Bone.

[25]  D. Louis Collins,et al.  Animal: Validation and Applications of Nonlinear Registration-Based Segmentation , 1997, Int. J. Pattern Recognit. Artif. Intell..

[26]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[27]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[28]  Calvin L. Williams,et al.  Modern Applied Statistics with S-Plus , 1997 .

[29]  Roland G. Henry,et al.  Whole brain voxel-wise analysis of single-subject serial DTI by permutation testing , 2008, NeuroImage.

[30]  J D Watson,et al.  Nonparametric Analysis of Statistic Images from Functional Mapping Experiments , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.