A Bayesian approach to sparse plus low rank network identification

We consider the problem of modeling multivariate stochastic processes with parsimonious dynamical models which can be represented with a sparse dynamic network with few latent nodes. This structure translates into a sparse plus low rank model. In this paper, we propose a Bayesian approach to identify such models.

[1]  Francesca P. Carli,et al.  Maximum Entropy Kernels for System Identification , 2014, IEEE Transactions on Automatic Control.

[2]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data , 2009 .

[3]  Manfred Deistler,et al.  Modelling High-Dimensional Time Series by Generalized Linear Dynamic Factor Models: an Introductory Survey , 2007, Commun. Inf. Syst..

[4]  Alessandro Chiuso,et al.  A Scaled Gradient Projection Method for Bayesian Learning in Dynamical Systems , 2014, SIAM J. Sci. Comput..

[5]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[6]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[7]  Alessandro Chiuso,et al.  Prediction error identification of linear systems: A nonparametric Gaussian regression approach , 2011, Autom..

[8]  Marco Grzegorczyk,et al.  Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks , 2006, Bioinform..

[9]  L. Goddard Information Theory , 1962, Nature.

[10]  Alessandro Chiuso,et al.  Convex vs non-convex estimators for regression and sparse estimation: the mean squared error properties of ARD and GLasso , 2014, J. Mach. Learn. Res..

[11]  Lennart Ljung,et al.  Kernel methods in system identification, machine learning and function estimation: A survey , 2014, Autom..

[12]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[13]  David P. Wipf,et al.  Non-Convex Rank Minimization via an Empirical Bayesian Approach , 2012, UAI.

[14]  Venkat Chandrasekaran,et al.  Gaussian Multiresolution Models: Exploiting Sparse Markov and Covariance Structure , 2010, IEEE Transactions on Signal Processing.

[15]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[16]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data: Methods and Models , 2009 .

[17]  Michael I. Jordan Graphical Models , 2003 .

[18]  Giuseppe De Nicolao,et al.  A new kernel-based approach for linear system identification , 2010, Autom..

[19]  Henrik Ohlsson,et al.  On the estimation of transfer functions, regularizations and Gaussian processes - Revisited , 2012, Autom..

[20]  Graham C. Goodwin,et al.  Estimated Transfer Functions with Application to Model Order Selection , 1992 .

[21]  Mattia Zorzi,et al.  AR Identification of Latent-Variable Graphical Models , 2014, IEEE Transactions on Automatic Control.

[22]  Alessandro Chiuso,et al.  Bayesian and regularization approaches to multivariable linear system identification: The role of rank penalties , 2014, 53rd IEEE Conference on Decision and Control.

[23]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[24]  Pablo A. Parrilo,et al.  Latent variable graphical model selection via convex optimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[25]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[26]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[27]  Alessandro Chiuso,et al.  A Bayesian approach to sparse dynamic network identification , 2012, Autom..