Compressive cooperative sensing and mapping in mobile networks

In this paper we consider a mobile cooperative network that is tasked with building a map of the spatial variations of a parameter of interest, such as an obstacle map or an aerial map. We propose a new framework that allows the nodes to build a map of the parameter of interest with a small number of measurements. By using the recent results in the area of compressive sensing, we show how the nodes can exploit the sparse representation of the parameter of interest in the transform domain in order to build a map with minimal sensing. The proposed work allows the nodes to efficiently map the areas that are not sensed directly. To illustrate the performance of the proposed framework, we show how the nodes can build an aerial map or a map of obstacles with sparse sensing. We furthermore show how our proposed framework enables a novel non-invasive approach to mapping obstacles by using wireless channel measurements.

[1]  Donald C. Cox,et al.  ICI mitigation for pilot-aided OFDM mobile systems , 2005, IEEE Transactions on Wireless Communications.

[2]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[3]  A. Aguado,et al.  Incremental map building using an occupancy grid for an autonomous monocular robot , 2002, 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002..

[4]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[5]  Soheil Darabi,et al.  Compressive Dual Photography , 2009, Comput. Graph. Forum.

[6]  Jack M. Holtzman,et al.  Analysis of a simple successive interference cancellation scheme in a DS/CDMA system , 1994, IEEE J. Sel. Areas Commun..

[7]  Howie Choset,et al.  Autonomous exploration via regions of interest , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[8]  F. Dellaert,et al.  Exploiting Locality by Nested Dissection For Square Root Smoothing and Mapping , 2005 .

[9]  Anthony M. Bloch,et al.  Motion Planning for Multi-Spacecraft Interferometric Imaging Systems , 2005 .

[10]  Yasamin Mostofi,et al.  Compressive cooperative obstacle mapping in mobile networks , 2010, 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE.

[11]  Gregory Dudek,et al.  Online control policy optimization for minimizing map uncertainty during exploration , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[12]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[13]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[14]  Donald C. Cox,et al.  Mathematical analysis of the impact of timing synchronization errors on the performance of an OFDM system , 2006, IEEE Transactions on Communications.

[15]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[16]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[17]  Michael G. Rabbat,et al.  Compressed RF Tomography for Wireless Sensor Networks: Centralized and Decentralized Approaches , 2009, DCOSS.

[18]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[19]  M. Rudelson,et al.  Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[20]  Frank Dellaert,et al.  Intrinsic Localization and Mapping with 2 applications: Diffusion Mapping and Macro Polo localization , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[21]  M. Rudelson,et al.  Smallest singular value of random matrices and geometry of random polytopes , 2005 .

[22]  Yasamin Mostofi,et al.  Characterization and modeling of wireless channels for networked robotic and control systems - a comprehensive overview , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  F. Santosa,et al.  Linear inversion of ban limit reflection seismograms , 1986 .

[24]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[25]  Donald C. Cox,et al.  A robust timing synchronization design in OFDM systems-part I: low-mobility cases , 2007, IEEE Transactions on Wireless Communications.

[26]  William M Smith,et al.  Urban propagation modeling for wireless systems , 2004 .

[27]  P. Sen,et al.  Compressed mapping of communication signal strength , 2008, MILCOM 2008 - 2008 IEEE Military Communications Conference.

[28]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[29]  Frank Dellaert,et al.  Exploiting Locality in SLAM by Nested Dissection , 2006, Robotics: Science and Systems.

[30]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[31]  Jorge Cortes,et al.  Maximizing visibility in nonconvex polygons: nonsmooth analysis and gradient algorithm design , 2005 .

[32]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[33]  O. Milenkovic,et al.  Designing Compressive Sensing DNA Microarrays , 2007, 2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing.

[34]  Donald C. Cox,et al.  Blind ISI mitigation , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[35]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[36]  P. Bhatta,et al.  Multi-AUV control and adaptive sampling in Monterey Bay , 2004, 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578).

[37]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[38]  Ren Ng Fourier slice photography , 2005, ACM Trans. Graph..

[39]  Héctor H. González-Baños,et al.  Navigation Strategies for Exploring Indoor Environments , 2002, Int. J. Robotics Res..

[40]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[41]  Soheil Darabi,et al.  Compressive Rendering: A Rendering Application of Compressed Sensing , 2011, IEEE Transactions on Visualization and Computer Graphics.

[42]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[43]  L.J. Cimini,et al.  MIMO Radar with Widely Separated Antennas , 2008, IEEE Signal Processing Magazine.

[44]  E. Candès,et al.  Error correction via linear programming , 2005, FOCS 2005.

[45]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[46]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[47]  Richard Pito,et al.  A Solution to the Next Best View Problem for Automated Surface Acquisition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Mehrzad Malmirchegini,et al.  Estimation of communication signal strength in robotic networks , 2010, 2010 IEEE International Conference on Robotics and Automation.

[49]  Neal Patwari,et al.  Radio Tomographic Imaging with Wireless Networks , 2010, IEEE Transactions on Mobile Computing.

[50]  Stanislaw J. Szarek,et al.  Condition numbers of random matrices , 1991, J. Complex..

[51]  Sonia Martínez,et al.  Distributed Interpolation Schemes for Field Estimation by Mobile Sensor Networks , 2010, IEEE Transactions on Control Systems Technology.

[52]  M. Wicks,et al.  RF Tomography with Application to Ground Penetrating Radar , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[53]  Piotr Indyk,et al.  Combining geometry and combinatorics: A unified approach to sparse signal recovery , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[54]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[55]  H. Durrant-Whyte,et al.  A closed form solution to the single degree of freedom simultaneous localisation and map building (SLAM) problem , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[56]  Andrea Goldsmith,et al.  Wireless Communications , 2005, 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[57]  Joonho Lee,et al.  Swarm intelligence for achieving the global maximum using spatio-temporal Gaussian processes , 2008, 2008 American Control Conference.

[58]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.