Robust Mapless Outdoor Vision-Based Navigation

This article presents an efficient and mature vision-based navigation algorithm based on sensory-motor learning. Neither Cartesian nor topological map are required, but a set of biologically inspired place cells. Each place cell defines a location by a spatial constellation of online learned landmarks. Their activity provides an internal measure of localization. A simple set of place-action associations enable a robot to go back to a learned location or to follow an arbitrary visual path. The system is able to achieve sensory-motor tasks in indoor as well as in large outdoor environments with similar computation load. The behavior is robust to kidnapping, object and landmark addition or removal, presence of mobile obstacles and severe visual field occlusions

[1]  R. Pfeifer,et al.  A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..

[2]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[3]  Jean-Arcady Meyer,et al.  Active Perception and Map Learning for Robot Navigation , 2000 .

[4]  Eric L. Schwartz,et al.  Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding , 1980, Vision Research.

[5]  Raja Chatila,et al.  Deliberation and reactivity in autonomous mobile robots , 1995, Robotics Auton. Syst..

[6]  Verena V. Hafner,et al.  Cognitive Maps in Rats and Robots , 2005, Adapt. Behav..

[7]  Angelo Arleo,et al.  Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity , 2000, Biological Cybernetics.

[8]  Jean-Arcady Meyer,et al.  BIOLOGICALLY BASED ARTIFICIAL NAVIGATION SYSTEMS: REVIEW AND PROSPECTS , 1997, Progress in Neurobiology.

[9]  Philippe Gaussier,et al.  A Hierarchy of Associations in Hippocampo-Cortical Systems: Cognitive Maps and Navigation Strategies , 2005, Neural Computation.

[10]  Philippe Gaussier,et al.  From Navigation to Active Object Recognition , 2000 .

[11]  Philippe Gaussier,et al.  PerAc: A neural architecture to control artificial animals , 1995, Robotics Auton. Syst..

[12]  Hanspeter A. Mallot,et al.  Biomimetic robot navigation , 2000, Robotics Auton. Syst..

[13]  P. Gaussiera,et al.  The visual homing problem : An example of robotics / biology cross fertilization , 1999 .

[14]  Philippe Gaussier,et al.  Neural networks for complex scene recognition: simulation of a visual system with several cortical areas , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[15]  Ralf Möller,et al.  Learning of Visual Navigation Strategies , 2001 .

[16]  Aude Billard,et al.  Formalization of recognition, affordances and learning in isolated or interacting animats , 2004 .

[17]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[18]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[19]  Michel Dhome,et al.  Outdoor autonomous navigation using monocular vision , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Philippe Gaussier,et al.  Visual navigation in an open environment without map , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[21]  C. Giovannangeli,et al.  Robots as Tool to Study the Robustness of Visual Place Cells , 2022 .

[22]  D. Noton,et al.  Eye movements and visual perception. , 1971, Scientific American.

[23]  T. S. Collett,et al.  Landmark learning in bees , 1983, Journal of comparative physiology.

[24]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[25]  Tom Duckett,et al.  Exploration of unknown environments using a compass, topological map and neural network , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[26]  Philippe Gaussier,et al.  The visual homing problem: An example of robotics/biology cross fertilization , 2000, Robotics Auton. Syst..

[27]  Frank Wolter,et al.  Exploring Artificial Intelligence in the New Millenium , 2002 .

[28]  Philippe Gaussier,et al.  From view cells and place cells to cognitive map learning: processing stages of the hippocampal system , 2002, Biological Cybernetics.

[29]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Cang Ye,et al.  A method for mobile robot navigation on rough terrain , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[31]  Philippe Gaussier,et al.  Navigation and Planning in an Unknown Environment Using Vision and a Cognitive Map , 2006, EUROS.

[32]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[33]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[34]  Allen M. Waxman,et al.  Mobile robot visual mapping and localization: A view-based neurocomputational architecture that emulates hippocampal place learning , 1994, Neural Networks.

[35]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[36]  Philippe Gaussier,et al.  Perception as a Dynamical Sensori-Motor Attraction Basin , 2005, ECAL.

[37]  Tom Duckett,et al.  Localization for Mobile Robots using Panoramic Vision, Local Features and Particle Filter , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[38]  Jean-Arcady Meyer,et al.  State of the artificial rat Psikharpax , 2004 .

[39]  James J. Little,et al.  Vision-based SLAM using the Rao-Blackwellised Particle Filter , 2005 .

[40]  Gordon Wyeth,et al.  Outdoor Simultaneous Localisation and Mapping Using RatSLAM , 2005, FSR.