Synaptic Microcircuits in the Barrel Cortex

An elementary feature of sensory cortices is thought to be their organisation into functional signal-processing units called ‘cortical columns’. These elementary units process sensory information arriving from peripheral receptors; they are vertically oriented throughout all cortical layers and contain several thousands of excitatory and inhibitory synaptic connections. To understand how sensory signals are transformed into electrical activity in the neocortex it is necessary to elucidate the spatial-temporal dynamics of cortical signal processing and the underlying neurons and synaptic ‘microcircuits’.

[1]  F. Valverde,et al.  A specialized type of neuron in the visual cortex of cat: A Golgi and electron microscope study of chandelier cells , 1980, The Journal of comparative neurology.

[2]  Karen L. Smith,et al.  Novel Hippocampal Interneuronal Subtypes Identified Using Transgenic Mice That Express Green Fluorescent Protein in GABAergic Interneurons , 2000, The Journal of Neuroscience.

[3]  F. Zhou,et al.  Layer I neurons of the rat neocortex. II. Voltage-dependent outward currents. , 1996, Journal of neurophysiology.

[4]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[5]  Randy M. Bruno,et al.  Comparative Strength and Dendritic Organization of Thalamocortical and Corticocortical Synapses onto Excitatory Layer 4 Neurons , 2014, The Journal of Neuroscience.

[6]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[7]  G. Shepherd,et al.  Geometric and functional organization of cortical circuits , 2005, Nature Neuroscience.

[8]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[9]  Dirk Feldmeyer,et al.  Developmental alterations in the functional properties of excitatory neocortical synapses , 2009, The Journal of physiology.

[10]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[11]  S. Hestrin,et al.  Synaptic Interactions of Late-Spiking Neocortical Neurons in Layer 1 , 2003, The Journal of Neuroscience.

[12]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[13]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[14]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[15]  Rebecca A Mease,et al.  Cortical control of adaptation and sensory relay mode in the thalamus , 2014, Proceedings of the National Academy of Sciences.

[16]  C. McBain,et al.  Neurogliaform cells dynamically regulate somatosensory integration via synapse-specific modulation , 2012, Nature Neuroscience.

[17]  B. Sakmann,et al.  Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. , 2009, Cerebral cortex.

[18]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[19]  H. Taniguchi Genetic dissection of GABAergic neural circuits in mouse neocortex , 2014, Front. Cell. Neurosci..

[20]  Bert Sakmann,et al.  Synaptic Connections between Layer 5B Pyramidal Neurons in Mouse Somatosensory Cortex Are Independent of Apical Dendrite Bundling , 2007, The Journal of Neuroscience.

[21]  F. Cicirata,et al.  Connexin expression in homotypic and heterotypic cell coupling in the developing cerebral cortex , 2002, The Journal of comparative neurology.

[22]  Alex M. Thomson,et al.  Neocortical Layer 6, A Review , 2010, Front. Neuroanat..

[23]  O. Ohana,et al.  Inter- and intralaminar subcircuits of excitatory and inhibitory neurons in layer 6a of the rat barrel cortex. , 2008, Journal of neurophysiology.

[24]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. White,et al.  Thalamocortical and other synapses involving nonspiny multipolar cells of mouse SmI cortex , 1984, The Journal of comparative neurology.

[26]  E. Welker,et al.  Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L) , 2004, Experimental Brain Research.

[27]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[28]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[29]  Ingo Bojak,et al.  A gradual depth-dependent change in connectivity features of supragranular pyramidal cells in rat barrel cortex , 2014, Brain Structure and Function.

[30]  B. Connors,et al.  A network of electrically coupled interneurons drives synchronized inhibition in neocortex , 2000, Nature Neuroscience.

[31]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[32]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[33]  Takahiro Furuta,et al.  Local Connections of Excitatory Neurons to Corticothalamic Neurons in the Rat Barrel Cortex , 2011, The Journal of Neuroscience.

[34]  Y. Kawaguchi,et al.  Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex , 2002, Journal of neurocytology.

[35]  Dirk Feldmeyer,et al.  Electrophysiological and morphological characterization of neuronal microcircuits in acute brain slices using paired patch-clamp recordings. , 2015, Journal of visualized experiments : JoVE.

[36]  H. S. Meyer,et al.  Cell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[37]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[38]  J. Winer,et al.  Layer V in rat auditory cortex: Projections to the inferior colliculus and contralateral cortex , 1988, Hearing Research.

[39]  Thomas K. Berger,et al.  Brief Bursts Self-Inhibit and Correlate the Pyramidal Network , 2010, PLoS biology.

[40]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[41]  J. Bolz,et al.  Morphology of identified projection neurons in layer 5 of rat visual cortex , 1988, Neuroscience Letters.

[42]  B. Sakmann,et al.  Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch , 2011, Proceedings of the National Academy of Sciences.

[43]  B. Connors,et al.  Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex. , 2002, Journal of neurophysiology.

[44]  D. Feldmeyer,et al.  Cell Type-Specific Effects of Adenosine on Cortical Neurons , 2013, Cerebral cortex.

[45]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[46]  D. Feldmeyer Excitatory neuronal connectivity in the barrel cortex , 2012, Front. Neuroanat..

[47]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[48]  Claire E. J. Cheetham,et al.  Sensory Experience Alters Cortical Connectivity and Synaptic Function Site Specifically , 2007, The Journal of Neuroscience.

[49]  Henry Markram,et al.  Multiquantal release underlies the distribution of synaptic effi cacies in the neocortex , 2022 .

[50]  B. Sakmann,et al.  Dimensions of a Projection Column and Architecture of VPM and POm Axons in Rat Vibrissal Cortex , 2010, Cerebral cortex.

[51]  B. Connors,et al.  The Spatial Dimensions of Electrically Coupled Networks of Interneurons in the Neocortex , 2002, The Journal of Neuroscience.

[52]  Bryan M. Hooks,et al.  Laminar Analysis of Excitatory Local Circuits in Vibrissal Motor and Sensory Cortical Areas , 2011, PLoS biology.

[53]  M. Marín‐padilla Dual origin of the mammalian neocortex and evolution of the cortical plate , 1978, Anatomy and Embryology.

[54]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[55]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[56]  L. Cauller Layer I of primary sensory neocortex: where top-down converges upon bottom-up , 1995, Behavioural Brain Research.

[57]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[58]  M. Deschenes,et al.  Parallel Streams for the Relay of Vibrissal Information through Thalamic Barreloids , 2000, The Journal of Neuroscience.

[59]  T A Woolsey,et al.  Axonal trajectories between mouse somatosensory thalamus and cortex , 1987, The Journal of comparative neurology.

[60]  L. Gentet Functional diversity of supragranular GABAergic neurons in the barrel cortex , 2012, Front. Neural Circuits.

[61]  Arno C. Schmitt,et al.  Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A , 2011, Proceedings of the National Academy of Sciences.

[62]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[63]  E. Ahissar,et al.  Parallel Thalamic Pathways for Whisking and Touch Signals in the Rat , 2006, PLoS biology.

[64]  L. Cauller,et al.  Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex , 1999, The Journal of comparative neurology.

[65]  E. Welker,et al.  Intracortical connectivity of layer VI pyramidal neurons in the somatosensory cortex of normal and barrelless mice , 2012, The European journal of neuroscience.

[66]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[67]  R. Silver,et al.  High-Probability Uniquantal Transmission at Excitatory Synapses in Barrel Cortex , 2003, Science.

[68]  Henry Markram,et al.  Synaptic and cellular organization of layer 1 of the developing rat somatosensory cortex , 2013, Front. Neuroanat..

[69]  Alex M Thomson,et al.  Layer 6 cortico-thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. , 2006, Cerebral cortex.

[70]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[71]  Alex M Thomson,et al.  Excitatory connections made by presynaptic cortico-cortical pyramidal cells in layer 6 of the neocortex. , 2005, Cerebral cortex.

[72]  E. Welker,et al.  Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP , 2004, Experimental Brain Research.

[73]  R. Guillery,et al.  Branched thalamic afferents: What are the messages that they relay to the cortex? , 2011, Brain Research Reviews.

[74]  KF Jensen,et al.  Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[76]  D. O'Leary,et al.  Functional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  Chen-Tung Yen,et al.  Distribution of large terminal inputs from the primary and secondary somatosensory cortices to the dorsal thalamus in the rodent , 2010, The Journal of comparative neurology.

[78]  M. Huntsman,et al.  Two functional inhibitory circuits are comprised of a heterogeneous population of fast-spiking cortical interneurons , 2014, Neuroscience.

[79]  Moritz Helmstaedter,et al.  Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. , 2008, Cerebral cortex.

[80]  B. Sakmann,et al.  High frequency action potential bursts (≥ 100 Hz) in L2/3 and L5B thick tufted neurons in anaesthetized and awake rat primary somatosensory cortex , 2008, The Journal of physiology.

[81]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[82]  Moritz Helmstaedter,et al.  A Barrel-Related Interneuron in Layer 4 of Rat Somatosensory Cortex with a High Intrabarrel Connectivity , 2013, Cerebral cortex.

[83]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[84]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[85]  H. Luhmann,et al.  Local circuits targeting parvalbumin-containing interneurons in layer IV of rat barrel cortex , 2009, Brain Structure and Function.

[86]  Christian Wozny,et al.  Specificity of Synaptic Connectivity between Layer 1 Inhibitory Interneurons and Layer 2/3 Pyramidal Neurons in the Rat Neocortex , 2011, Cerebral cortex.

[87]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[88]  O. Marín,et al.  Generation of interneuron diversity in the mouse cerebral cortex , 2010, The European journal of neuroscience.

[89]  R. Kötter,et al.  Layer-Specific Intracolumnar and Transcolumnar Functional Connectivity of Layer V Pyramidal Cells in Rat Barrel Cortex , 2001, The Journal of Neuroscience.

[90]  F. Hajdu,et al.  Identification of the golgi picture of the layer VI cortico-geniculate projection neurons , 1975, Experimental Brain Research.

[91]  Martin Deschênes,et al.  The organization of corticothalamic projections: reciprocity versus parity , 1998, Brain Research Reviews.

[92]  Yasuo Kawaguchi,et al.  Cell Diversity and Connection Specificity between Callosal Projection Neurons in the Frontal Cortex , 2011, The Journal of Neuroscience.

[93]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[94]  H. Markram,et al.  Frequency and Dendritic Distribution of Autapses Established by Layer 5 Pyramidal Neurons in the Developing Rat Neocortex: Comparison with Synaptic Innervation of Adjacent Neurons of the Same Class , 1996, The Journal of Neuroscience.

[95]  E. White,et al.  Distribution of thalamic input to different dendrites of a spiny stellate cell in mouse sensorimotor cortex , 1979, Neuroscience Letters.

[96]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[97]  Rebecca A. Mease,et al.  Convergence of Cortical and Sensory Driver Inputs on Single Thalamocortical Cells , 2013, Cerebral cortex.

[98]  K. Martin,et al.  Intracortical excitation of spiny neurons in layer 4 of cat striate cortex in vitro. , 1999, Cerebral cortex.

[99]  B. Sakmann,et al.  Developmental Switch in the Short-Term Modification of Unitary EPSPs Evoked in Layer 2/3 and Layer 5 Pyramidal Neurons of Rat Neocortex , 1999, The Journal of Neuroscience.

[100]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[101]  Manuel Marx,et al.  Morphology and Physiology of Excitatory Neurons in Layer 6b of the Somatosensory Rat Barrel Cortex , 2012, Cerebral cortex.

[102]  E. Callaway,et al.  Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells , 2010, The Journal of comparative neurology.

[103]  J. Brumberg,et al.  Morphological heterogeneity of layer VI neurons in mouse barrel cortex , 2009, The Journal of comparative neurology.

[104]  C. Petersen,et al.  Long‐range connectivity of mouse primary somatosensory barrel cortex , 2010, The European journal of neuroscience.

[105]  E. White,et al.  Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex , 1986, The Journal of comparative neurology.

[106]  Arto V. Nurmikko,et al.  Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons , 2010, Neuron.

[107]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[108]  R. Yuste,et al.  Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. , 2013, Cerebral cortex.

[109]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[110]  A. Agmon,et al.  Submillisecond Firing Synchrony between Different Subtypes of Cortical Interneurons Connected Chemically But Not Electrically , 2011, The Journal of Neuroscience.

[111]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[112]  Christian Stricker,et al.  Functional connectivity in layer IV local excitatory circuits of rat somatosensory cortex. , 2004, Journal of neurophysiology.

[113]  A. Peters,et al.  The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description , 1976, Journal of neurocytology.

[114]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[115]  D. Simons,et al.  Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex , 1989, The Journal of comparative neurology.

[116]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[117]  R. S. Waters,et al.  Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat , 2000, Experimental Brain Research.

[118]  Jean Rossier,et al.  Diversity of GABAergic interneurons in layer VIa and VIb of mouse barrel cortex. , 2013, Cerebral cortex.

[119]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[120]  Xiaolong Jiang,et al.  Canonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits. , 2015, Cerebral cortex.

[121]  J. Bolz,et al.  Morphological types of projection neurons in layer 5 of cat visual cortex , 1990, The Journal of comparative neurology.

[122]  Johannes J. Letzkus,et al.  Cortical feed-forward networks for binding different streams of sensory information , 2006, Nature Neuroscience.

[123]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[124]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[125]  E. Kuramoto,et al.  A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. , 2012, Cerebral cortex.

[126]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[127]  A. Agmon,et al.  Short-Term Plasticity of Unitary Inhibitory-to-Inhibitory Synapses Depends on the Presynaptic Interneuron Subtype , 2012, The Journal of Neuroscience.

[128]  S. Sherman,et al.  The corticothalamocortical circuit drives higher-order cortex in the mouse , 2009, Nature Neuroscience.

[129]  D. Jabaudon,et al.  Synaptic biology of barrel cortex circuit assembly. , 2014, Seminars in cell & developmental biology.

[130]  Paolo Calabresi,et al.  Anatomy of the cortex. Statistics and geometry. Studies of brain function: Vol. 18. - V. Braitenberg and A. Schuz (Springer, Berlin, 1991, ix + 249 pp., 85 figs., DM 58.00, ISBN 3-540-53233-1) , 1991 .

[131]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[132]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[133]  Moritz Helmstaedter,et al.  L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. , 2009, Cerebral cortex.

[134]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[135]  R. R. Sturrock,et al.  Problems of the Keimbahn: New Work on Mammalian Germ Cell Lineage , 1985 .

[136]  Karl F. Jensen,et al.  Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex , 1988, Brain Research.

[137]  J. Lübke,et al.  Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats , 2006, The Journal of physiology.

[138]  Asaf Keller,et al.  Functional independence of layer IV barrels. , 2002, Journal of neurophysiology.

[139]  Maria Blatow,et al.  Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. , 2009, Cerebral cortex.

[140]  Y. Kawaguchi,et al.  Recurrent Connection Patterns of Corticostriatal Pyramidal Cells in Frontal Cortex , 2006, The Journal of Neuroscience.

[141]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[142]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[143]  Moritz Helmstaedter,et al.  Efficient Recruitment of Layer 2/3 Interneurons by Layer 4 Input in Single Columns of Rat Somatosensory Cortex , 2008, The Journal of Neuroscience.

[144]  H. S. Meyer,et al.  Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[145]  H. Markram,et al.  Morphological, Electrophysiological, and Synaptic Properties of Corticocallosal Pyramidal Cells in the Neonatal Rat Neocortex , 2006 .

[146]  F. Clascá,et al.  Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. , 2009, Cerebral cortex.

[147]  A. Thomson,et al.  Selectivity in the inter-laminar connections made by neocortical neurones , 2002, Journal of neurocytology.

[148]  Damian J. Wallace,et al.  Sensory Experience Alters Specific Branches of Individual Corticocortical Axons during Development , 2009, The Journal of Neuroscience.

[149]  Shaul Hestrin,et al.  Layer 6 Corticothalamic Neurons Activate a Cortical Output Layer, Layer 5a , 2014, The Journal of Neuroscience.

[150]  S. Cruikshank,et al.  Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex , 2007, Nature Neuroscience.

[151]  Thomas K. Berger,et al.  Frequency‐dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex , 2009, The Journal of physiology.

[152]  M. Deschenes,et al.  Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat , 2000, The Journal of comparative neurology.

[153]  Y. Kubota,et al.  Highly Differentiated Projection-Specific Cortical Subnetworks , 2011, The Journal of Neuroscience.

[154]  Christine M Constantinople,et al.  Deep Cortical Layers Are Activated Directly by Thalamus , 2013, Science.

[155]  Kevin D Alloway,et al.  Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits. , 2008, Cerebral cortex.

[156]  D J Simons,et al.  Cortical columnar processing in the rat whisker-to-barrel system. , 1999, Journal of neurophysiology.

[157]  E. G. Jones,et al.  Synchrony in the Interconnected Circuitry of the Thalamus and Cerebral Cortex , 2009, Annals of the New York Academy of Sciences.

[158]  Karel Svoboda,et al.  Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex , 2011, Neuron.

[159]  Shawn R. Olsen,et al.  Translaminar Inhibitory Cells Recruited by Layer 6 Corticothalamic Neurons Suppress Visual Cortex , 2014, Neuron.

[160]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[161]  Cpj de Kock,et al.  Reconstruction of an average cortical column in silico , 2007, Brain Research Reviews.

[162]  Omar J. Ahmed,et al.  Thalamic Control of Layer 1 Circuits in Prefrontal Cortex , 2012, The Journal of Neuroscience.

[163]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[164]  Edward M. Callaway,et al.  Retrograde Tracing with Recombinant Rabies Virus Reveals Correlations Between Projection Targets and Dendritic Architecture in Layer 5 of Mouse Barrel Cortex , 2007, Frontiers in neural circuits.

[165]  K. Svoboda,et al.  Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex , 2006, PLoS biology.

[166]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[167]  Edward M Callaway,et al.  Development of layer‐specific axonal arborizations in mouse primary somatosensory cortex , 2006, The Journal of comparative neurology.

[168]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[169]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[170]  R. Yuste,et al.  Stereotyped position of local synaptic targets in neocortex. , 2001, Science.

[171]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[172]  Bert Sakmann,et al.  Monosynaptic Connections between Pairs of Spiny Stellate Cells in Layer 4 and Pyramidal Cells in Layer 5A Indicate That Lemniscal and Paralemniscal Afferent Pathways Converge in the Infragranular Somatosensory Cortex , 2005, The Journal of Neuroscience.

[173]  R Kötter,et al.  Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. , 2006, Cerebral cortex.

[174]  Idan Segev,et al.  Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: Interweaving in vitro and in vivo experimental observations , 2007, Proceedings of the National Academy of Sciences.

[175]  Erika E Fanselow,et al.  Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. , 2008, Journal of neurophysiology.

[176]  M. Whittington,et al.  A Novel Network of Multipolar Bursting Interneurons Generates Theta Frequency Oscillations in Neocortex , 2003, Neuron.

[177]  W. Gerstner,et al.  Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. , 2012, Journal of neurophysiology.

[178]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[179]  E. White,et al.  Synapses made by axons of callosal projection neurons in mouse somatosensory cortex: Emphasis on intrinsic connections , 1991, The Journal of comparative neurology.

[180]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[181]  Moritz Helmstaedter,et al.  The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel cortex. , 2009, Cerebral cortex.

[182]  E. White,et al.  A comparison of thalamocortical and other synaptic inputs to dendrites of two non‐spiny neurons in a single barrel of mouse SmI cortex , 1981, The Journal of comparative neurology.

[183]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[184]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[185]  Randy M Bruno,et al.  Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex. , 2008, Cerebral cortex.

[186]  M. Deschenes,et al.  Intracortical Axonal Projections of Lamina VI Cells of the Primary Somatosensory Cortex in the Rat: A Single-Cell Labeling Study , 1997, The Journal of Neuroscience.

[187]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[188]  L. Cauller,et al.  Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats , 2001, Brain Research.

[189]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[190]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[191]  Bert Sakmann,et al.  Linear integration of spine Ca2+ signals in layer 4 cortical neurons in vivo , 2014, Proceedings of the National Academy of Sciences.

[192]  H. Markram,et al.  Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. , 2002, Cerebral cortex.

[193]  Kenneth D Miller,et al.  Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex , 2001, Current Opinion in Neurobiology.

[194]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[195]  J. Lübke,et al.  Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. , 2003, Cerebral cortex.

[196]  F. Helmchen,et al.  Barrel cortex function , 2013, Progress in Neurobiology.

[197]  A. Cowey,et al.  The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey , 1982, Neuroscience.

[198]  Bert Sakmann,et al.  Driver or Coincidence Detector: Modal Switch of a Corticothalamic Giant Synapse Controlled by Spontaneous Activity and Short-Term Depression , 2008, The Journal of Neuroscience.

[199]  S. Sherman,et al.  Thalamic relays and cortical functioning. , 2005, Progress in brain research.

[200]  J. C. Nelson,et al.  Quantal Analysis Reveals a Functional Correlation between Presynaptic and Postsynaptic Efficacy in Excitatory Connections from Rat Neocortex , 2010, The Journal of Neuroscience.

[201]  R W Guillery,et al.  Distinct functions for direct and transthalamic corticocortical connections. , 2011, Journal of neurophysiology.

[202]  I. Katona,et al.  In Vivo Labeling of Parvalbumin-Positive Interneurons and Analysis of Electrical Coupling in Identified Neurons , 2002, The Journal of Neuroscience.

[203]  J. Lübke,et al.  Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex , 2007, Brain Structure and Function.

[204]  Edward L. White,et al.  Reflections on the specificity of synaptic connections , 2007, Brain Research Reviews.

[205]  S Murray Sherman,et al.  Corticothalamic Projections from the Rat Primary Somatosensory Cortex , 2003, The Journal of Neuroscience.

[206]  Taro Kiritani,et al.  Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex , 2010, Nature Neuroscience.

[207]  D. Kleinfeld,et al.  Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system , 2009, Nature Neuroscience.

[208]  Z. Josh Huang,et al.  Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons , 2008, Proceedings of the National Academy of Sciences.

[209]  M. Deschenes,et al.  Septal neurons in barrel cortex derive their receptive field input from the lemniscal pathway , 2009, Neuroscience Research.

[210]  Cullen B. Owens,et al.  Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements , 2011, Front. Integr. Neurosci..

[211]  Idan Segev,et al.  Contribution of Intracolumnar Layer 2/3-to-Layer 2/3 Excitatory Connections in Shaping the Response to Whisker Deflection in Rat Barrel Cortex , 2013, Cerebral cortex.