Efficient robust private set intersection

Computing set intersection privately and efficiently between two mutually mistrusting parties is an important basic procedure in the area of private data mining. Assuring robustness, namely, coping with potentially arbitrarily misbehaving (i.e., malicious) parties, while retaining protocol efficiency (rather than employing costly generic techniques) is an open problem. In this work, the first solution to this problem is presented.

[1]  Yehuda Lindell,et al.  An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries , 2007, EUROCRYPT.

[2]  Andrew Chi-Chih Yao,et al.  How to Generate and Exchange Secrets (Extended Abstract) , 1986, FOCS.

[3]  Benny Pinkas,et al.  Efficient Private Matching and Set Intersection , 2004, EUROCRYPT.

[4]  Yehuda Lindell,et al.  Efficient Protocols for Set Intersection and Pattern Matching with Security Against Malicious and Covert Adversaries , 2008, TCC.

[5]  Silvio Micali,et al.  Probabilistic encryption & how to play mental poker keeping secret all partial information , 1982, STOC '82.

[6]  Peter Winkler,et al.  Comparing information without leaking it , 1996, CACM.

[7]  Dawn Xiaodong Song,et al.  Privacy-Preserving Set Operations , 2005, CRYPTO.

[8]  Yehuda Lindell,et al.  Efficient Fully-Simulatable Oblivious Transfer , 2008, Chic. J. Theor. Comput. Sci..

[9]  Jonathan Katz,et al.  Introduction to Modern Cryptography: Principles and Protocols , 2007 .

[10]  Yehuda Lindell,et al.  Privacy Preserving Data Mining , 2002, Journal of Cryptology.

[11]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[12]  Moti Yung,et al.  Direct Minimum-Knowledge Computations , 1987, CRYPTO.

[13]  Hugo Krawczyk,et al.  Secure Distributed Key Generation for Discrete-Log Based Cryptosystems , 1999, Journal of Cryptology.

[14]  Xiaomin Liu,et al.  Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection , 2009, TCC.

[15]  Alexandre V. Evfimievski,et al.  Information sharing across private databases , 2003, SIGMOD '03.

[16]  Yehuda Lindell,et al.  Introduction to Modern Cryptography (Chapman & Hall/Crc Cryptography and Network Security Series) , 2007 .

[17]  Jacques Traoré,et al.  A fair and efficient solution to the socialist millionaires' problem , 2001, Discret. Appl. Math..

[18]  Aggelos Kiayias,et al.  Testing Disjointness of Private Datasets , 2005, Financial Cryptography.

[19]  Ran Canetti,et al.  Security and Composition of Multiparty Cryptographic Protocols , 2000, Journal of Cryptology.

[20]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[21]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[22]  Matthew K. Franklin,et al.  Communication complexity of secure computation (extended abstract) , 1992, STOC '92.

[23]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[24]  Markus Jakobsson,et al.  Proving Without Knowing: On Oblivious, Agnostic and Blindolded Provers , 1996, CRYPTO.

[25]  Oded Goldreich,et al.  How to construct constant-round zero-knowledge proof systems for NP , 1996, Journal of Cryptology.

[26]  Tal Malkin,et al.  Black-Box Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One , 2008, TCC.

[27]  Yehuda Lindell,et al.  Privacy Preserving Data Mining , 2000, Journal of Cryptology.

[28]  Jacques Stern,et al.  Sharing Decryption in the Context of Voting or Lotteries , 2000, Financial Cryptography.

[29]  Yehuda Lindell,et al.  Introduction to Modern Cryptography , 2004 .

[30]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[31]  Moti Yung,et al.  Efficient robust private set intersection , 2009, Int. J. Appl. Cryptogr..

[32]  Moni Naor,et al.  Oblivious transfer and polynomial evaluation , 1999, STOC '99.

[33]  Jan Camenisch,et al.  Private Intersection of Certified Sets , 2009, Financial Cryptography.

[34]  Oded Goldreich,et al.  Foundations of Cryptography - A Primer , 2005, Found. Trends Theor. Comput. Sci..