Extending fuzzy soft sets with fuzzy description logics

Molodtsov initiated the concept of soft set theory, which can be used as a generic mathematical tool for dealing with uncertainty. However, it has been pointed out that classical soft sets are not appropriate to deal with imprecise and fuzzy parameters. In order to handle these types of problem parameters, some fuzzy extensions of soft set theory are presented, yielding fuzzy soft set theory. Fuzzy description logics (DLs) are a family of logics which allow the representation of and the reasoning within structured knowledge affected by vagueness. In this paper we extend fuzzy soft sets with fuzzy DLs, i.e., present an extended fuzzy soft set theory by using the concepts of fuzzy DLs to act as the parameters of fuzzy soft sets. We define some operations for the extended fuzzy soft sets. Moreover, we prove that certain De Morgan's laws hold in the extended fuzzy soft set theory with respect to these operations. In fact, the extended fuzzy soft set theory based on fuzzy DLs presented in this paper is a fuzzy extension of the extended soft set theory based on DLs.

[1]  Naim Çagman,et al.  Soft sets and soft groups , 2007, Inf. Sci..

[2]  Pabitra Kumar Maji,et al.  More on Intuitionistic Fuzzy Soft Sets , 2009, RSFDGrC.

[3]  Umberto Straccia,et al.  A fuzzy description logic for the semantic web , 2006, Fuzzy Logic and the Semantic Web.

[4]  Ju Wang,et al.  Extending soft sets with description logics , 2010, Comput. Math. Appl..

[5]  Halis Aygün,et al.  Introduction to fuzzy soft groups , 2009, Comput. Math. Appl..

[6]  Eric C. C. Tsang,et al.  The parameterization reduction of soft sets and its applications , 2005 .

[7]  Jianming Zhan,et al.  Soft p-ideals of soft BCI-algebras , 2009, Comput. Math. Appl..

[8]  Ju Wang,et al.  Expressive fuzzy description logics over lattices , 2010, Knowl. Based Syst..

[9]  D. Molodtsov Soft set theory—First results , 1999 .

[10]  Fernando Bobillo,et al.  Crisp Representations and Reasoning for Fuzzy Ontologies , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[11]  Young Bae Jun,et al.  Soft BCK/BCI-algebras , 2008, Comput. Math. Appl..

[12]  G. Stamou,et al.  Reasoning with Very Expressive Fuzzy Description Logics , 2007, J. Artif. Intell. Res..

[13]  Umberto Straccia,et al.  Managing uncertainty and vagueness in description logics for the Semantic Web , 2008, J. Web Semant..

[14]  A. R. Roy,et al.  Soft set theory , 2003 .

[15]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[16]  Tsau Young Lin,et al.  Combination of interval-valued fuzzy set and soft set , 2009, Comput. Math. Appl..

[17]  Fernando Bobillo,et al.  DeLorean: A Reasoner for Fuzzy OWL 1.1 , 2008, URSW.

[18]  Umberto Straccia,et al.  Fuzzy description logics with general t-norms and datatypes , 2009, Fuzzy Sets Syst..

[19]  A. R. Roy,et al.  A fuzzy soft set theoretic approach to decision making problems , 2007 .

[20]  Bekir Tanay,et al.  Computers and Mathematics with Applications , 2022 .

[21]  A. R. Roy,et al.  An application of soft sets in a decision making problem , 2002 .

[22]  Dragan Gasevic,et al.  Reasoning with part-part relations in a description logic , 2011, Knowl. Based Syst..

[23]  Young Bae Jun,et al.  Soft set theory applied to ideals in d-algebras , 2009, Comput. Math. Appl..

[24]  Bijan Davvaz,et al.  Soft sets combined with fuzzy sets and rough sets: a tentative approach , 2010, Soft Comput..

[25]  Ian Horrocks,et al.  Keys, Nominals, and Concrete Domains , 2003, IJCAI.

[26]  Yan Zou,et al.  Data analysis approaches of soft sets under incomplete information , 2008, Knowl. Based Syst..

[27]  Young Bae Jun,et al.  Soft semirings , 2008, Comput. Math. Appl..

[28]  Yan Zou,et al.  Exclusive disjunctive soft sets , 2010, Comput. Math. Appl..

[29]  Hai Liu,et al.  Interval-valued intuitionistic fuzzy soft sets and their properties , 2010, Comput. Math. Appl..

[30]  Hailong Wang,et al.  A vague description logic SI , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[31]  Naim Çagman,et al.  Soft matrix theory and its decision making , 2010, Comput. Math. Appl..

[32]  Jing-Yu Yang,et al.  Generalization of Soft Set Theory: From Crisp to Fuzzy Case , 2007, ICFIE.

[33]  Young Bae Jun,et al.  An adjustable approach to fuzzy soft set based decision making , 2010, J. Comput. Appl. Math..

[34]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[35]  Xiaoyan Liu,et al.  On some new operations in soft set theory , 2009, Comput. Math. Appl..

[36]  Jian Ma,et al.  Vague soft sets and their properties , 2010, Comput. Math. Appl..

[37]  S. Varadhan,et al.  Probability Theory , 2001 .

[38]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[39]  Umberto Straccia,et al.  Description Logics with Fuzzy Concrete Domains , 2005, UAI.

[40]  Pinaki Majumdar,et al.  Generalised fuzzy soft sets , 2010, Comput. Math. Appl..

[41]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[42]  Ju Wang,et al.  Reasoning within intuitionistic fuzzy rough description logics , 2009, Inf. Sci..

[43]  Liqun Gao,et al.  Letter to the editor: Comment on A fuzzy soft set theoretic approach to decision making problems , 2009 .

[44]  Xiaoqing Zheng Combining description logics and Horn rules with uncertainty in ARTIGENCE , 2011, Knowl. Based Syst..

[45]  Carsten Lutz,et al.  NEXP TIME-complete description logics with concrete domains , 2004, TOCL.

[46]  Naim Çagman,et al.  Soft set theory and uni-int decision making , 2010, Eur. J. Oper. Res..

[47]  Young Bae Jun,et al.  Applications of soft sets in ideal theory of BCK/BCI-algebras , 2008, Inf. Sci..

[48]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[49]  Umberto Straccia,et al.  fuzzyDL: An expressive fuzzy description logic reasoner , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[50]  Umberto Straccia,et al.  Fuzzy description logics under Gödel semantics , 2009, Int. J. Approx. Reason..

[51]  Yong Tang,et al.  An adjustable approach to intuitionistic fuzzy soft sets based decision making , 2011 .

[52]  Steven Li,et al.  The normal parameter reduction of soft sets and its algorithm , 2008, Comput. Math. Appl..

[53]  Zhi Xiao,et al.  A combined forecasting approach based on fuzzy soft sets , 2009 .

[54]  Mustafa Mat Deris,et al.  A soft set approach for association rules mining , 2011, Knowl. Based Syst..

[55]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[56]  Pabitra Kumar Maji,et al.  FUZZY SOFT SETS , 2001 .

[57]  Young Bae Jun,et al.  Fuzzy soft set theory applied to BCK/BCI-algebras , 2010, Comput. Math. Appl..