Human Hippocampal CA1 Involvement during Allocentric Encoding of Spatial Information

A central component of our ability to navigate an environment is the formation of a memory representation that is allocentric and thus independent of our starting point within that environment. Computational models and rodent electrophysiological recordings suggest a critical role for the CA1 subregion of the hippocampus in this type of coding; however, the hippocampal neural basis of spatial learning in humans remains unclear. We studied subjects learning virtual environments using high-resolution functional magnetic resonance imaging (1.6 mm × 1.6 mm in-plane) and computational unfolding to better visualize substructural changes in neural activity in the hippocampus. We show that the right posterior CA1 subregion is active and positively correlated with performance when subjects learn a spatial environment independent of starting point and direction. Altogether, our results demonstrate that the CA1 subregion is involved in our ability to learn a map-like representation of an environment.

[1]  M. Witter,et al.  Anatomical Organization of the Parahippocampal‐Hippocampal Network , 2000, Annals of the New York Academy of Sciences.

[2]  E. Maguire,et al.  The Well-Worn Route and the Path Less Traveled Distinct Neural Bases of Route Following and Wayfinding in Humans , 2003, Neuron.

[3]  J. Gray,et al.  Allocentric spatial memory activation of the hippocampal formation measured with fMRI. , 2004, Neuropsychology.

[4]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[5]  N Burgess,et al.  Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. , 2001, Brain : a journal of neurology.

[6]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[7]  G H Glover,et al.  Separate neural bases of two fundamental memory processes in the human medial temporal lobe. , 1997, Science.

[8]  J. Gabrieli,et al.  Neural Correlates of Encoding Space from Route and Survey Perspectives , 2002, The Journal of Neuroscience.

[9]  Dharshan Kumaran,et al.  The Human Hippocampus: Cognitive Maps or Relational Memory? , 2005, The Journal of Neuroscience.

[10]  C. Stark,et al.  Pattern Separation in the Human Hippocampal CA3 and Dentate Gyrus , 2008, Science.

[11]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[12]  Arne D. Ekstrom,et al.  Advances in high-resolution imaging and computational unfolding of the human hippocampus , 2009, NeuroImage.

[13]  Guillermo Sapiro,et al.  Creating connected representations of cortical gray matter for functional MRI visualization , 1997, IEEE Transactions on Medical Imaging.

[14]  L. Squire,et al.  Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[16]  Ian P. Howard,et al.  Human visual orientation , 1982 .

[17]  M. Petrides,et al.  Cognitive Strategies Dependent on the Hippocampus and Caudate Nucleus in Human Navigation: Variability and Change with Practice , 2003, The Journal of Neuroscience.

[18]  J. Knierim,et al.  Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 , 2004, Nature.

[19]  D. Hassabis,et al.  Decoding Neuronal Ensembles in the Human Hippocampus , 2009, Current Biology.

[20]  C. Gross,et al.  Functional differentiation along the anterior-posterior axis of the hippocampus in monkeys. , 1998, Journal of neurophysiology.

[21]  T. McNamara,et al.  Cognitive maps and the hippocampus , 2003, Trends in Cognitive Sciences.

[22]  M. Moser,et al.  Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex , 2008, Neuron.

[23]  Neil Burgess,et al.  Attractor Dynamics in the Hippocampal Representation of the Local Environment , 2005, Science.

[24]  Morris Moscovitch,et al.  Networks of domain-specific and general regions involved in episodic memory for spatial location and object identity , 1998, Neuropsychologia.

[25]  Barbara J Knowlton,et al.  The hippocampus, consolidation and on-line memory , 1998, Current Opinion in Neurobiology.

[26]  G. Winocur,et al.  “I have often walked down this street before”: fMRI Studies on the hippocampus and other structures during mental navigation of an old environment , 2004, Hippocampus.

[27]  Larry R Squire,et al.  Spatial memory and the human hippocampus , 2007, Proceedings of the National Academy of Sciences.

[28]  D. Amaral,et al.  The Hippocampal Formation , 2009 .

[29]  B. Knowlton,et al.  A Dissociation of Encoding and Retrieval Processes in the Human Hippocampus , 2005, The Journal of Neuroscience.

[30]  Craig E. L. Stark,et al.  When zero is not zero: The problem of ambiguous baseline conditions in fMRI , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Michael R. Hunsaker,et al.  The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. , 2008, Behavioral neuroscience.

[32]  G. Mangun,et al.  Successful Verbal Encoding into Episodic Memory Engages the Posterior Hippocampus: A Parametrically Analyzed Functional Magnetic Resonance Imaging Study , 1998, The Journal of Neuroscience.

[33]  John A. King,et al.  Human hippocampus and viewpoint dependence in spatial memory , 2002, Hippocampus.

[34]  P M Thompson,et al.  Unfolding the human hippocampus with high resolution structural and functional MRI , 2001, The Anatomical record.

[35]  V Hachinski,et al.  Vascular Factors in Cognitive Impairment‐Where Are We Now? , 2000, Annals of the New York Academy of Sciences.

[36]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[37]  M. D’Esposito,et al.  The parahippocampus subserves topographical learning in man , 1996, NeuroImage.

[38]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[39]  M. Mishkin,et al.  One-Trial Memory for Object-Place Associations after Separate Lesions of Hippocampus and Posterior Parahippocampal Region in the Monkey , 2003, The Journal of Neuroscience.

[40]  L. Nadel,et al.  Hippocampus: cognitive map or working memory? , 1980, Behavioral and neural biology.

[41]  Bruce L. McNaughton,et al.  Progressive Transformation of Hippocampal Neuronal Representations in “Morphed” Environments , 2005, Neuron.

[42]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[43]  S. Engel,et al.  Dynamics of the Hippocampus During Encoding and Retrieval of Face-Name Pairs , 2003, Science.

[44]  R. Morris,et al.  Place navigation impaired in rats with hippocampal lesions , 1982, Nature.

[45]  M. Wilson,et al.  Trajectory Encoding in the Hippocampus and Entorhinal Cortex , 2000, Neuron.

[46]  J. B. Ranck,et al.  Spatial firing patterns of hippocampal complex-spike cells in a fixed environment , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  J. Lisman,et al.  Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information , 2001, Hippocampus.

[48]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[49]  S. Bricogne,et al.  Neural Correlates of Topographic Mental Exploration: The Impact of Route versus Survey Perspective Learning , 2000, NeuroImage.

[50]  R. Clark,et al.  The medial temporal lobe. , 2004, Annual review of neuroscience.

[51]  W. Levy A computational approach to hippocampal function , 1989 .

[52]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[53]  H. Duvernoy,et al.  The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI , 1997 .

[54]  M. Tamosiunaite,et al.  Hippocampal CA1 Place Cells Encode Intended Destination on a Maze with Multiple Choice Points , 2007, The Journal of Neuroscience.

[55]  Stephen A. Engel,et al.  Application of Cortical Unfolding Techniques to Functional MRI of the Human Hippocampal Region , 2000, NeuroImage.

[56]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[57]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[58]  P. Dudchenko The hippocampus as a cognitive map , 2010 .

[59]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[60]  J. Gläscher,et al.  Dissociable contributions within the medial temporal lobe to encoding of object-location associations. , 2005, Learning & memory.

[61]  Gordon H. Bower,et al.  Computational models of learning in simple neural systems , 1989 .

[62]  Stefan Köhler,et al.  Differential contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes , 2002, Hippocampus.

[63]  E. Maguire,et al.  London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis , 2006, Hippocampus.