Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics

Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rossler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown enviro...

[1]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[2]  Kwok-Wo Wong,et al.  An improved particle swarm optimization algorithm combined with piecewise linear chaotic map , 2007, Appl. Math. Comput..

[3]  Andrzej Pelc,et al.  Graph exploration by a finite automaton , 2005, Theor. Comput. Sci..

[4]  Kunle Olukotun,et al.  Efficient Parallel Graph Exploration on Multi-Core CPU and GPU , 2011, 2011 International Conference on Parallel Architectures and Compilation Techniques.

[5]  A. Barabasi,et al.  Functional and topological characterization of protein interaction networks , 2004, Proteomics.

[6]  Alyson Wilson,et al.  Asymptotic Results for Configuration Model Random Graphs with Arbitrary Degree Distributions , 2010 .

[7]  Enrico Motta,et al.  Walking Linked Data: a Graph Traversal Approach to Explain Clusters , 2014, COLD.

[8]  Lixiang Li,et al.  An Optimization Method Inspired by "chaotic" Ant Behavior , 2006, Int. J. Bifurc. Chaos.

[9]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[10]  Martin Rosalie,et al.  Toward a General Procedure for Extracting Templates from Chaotic Attractors Bounded by High Genus Torus , 2014, Int. J. Bifurc. Chaos.

[11]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[12]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Stefan Langerman,et al.  Online graph exploration algorithms for cycles and trees by multiple searchers , 2012, Journal of Combinatorial Optimization.

[14]  David Ilcinkas,et al.  Setting port numbers for fast graph exploration , 2006, Theor. Comput. Sci..

[15]  Xin-She Yang,et al.  Chaos-enhanced accelerated particle swarm optimization , 2013, Commun. Nonlinear Sci. Numer. Simul..

[16]  Pascal Bouvry,et al.  Management of an academic HPC cluster: The UL experience , 2014, 2014 International Conference on High Performance Computing & Simulation (HPCS).

[17]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[18]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[19]  Ihsan Pehlivan,et al.  Implementation of FPGA-based real time novel chaotic oscillator , 2014 .

[20]  Susanne Albers,et al.  Exploring Unknown Environments , 2000, SIAM J. Comput..

[21]  Israel A. Wagner,et al.  Distributed covering by ant-robots using evaporating traces , 1999, IEEE Trans. Robotics Autom..

[22]  Lada A. Adamic The Small World Web , 1999, ECDL.

[23]  J. Starrett,et al.  Non-strange chaotic attractors equivalent to their templates , 2009 .

[24]  Prabhakar Raghavan,et al.  Random walks on weighted graphs and applications to on-line algorithms , 1993, JACM.

[25]  Sameh Elnikety,et al.  Systems for Big-Graphs , 2014, Proc. VLDB Endow..

[26]  Michael Jenkin,et al.  Robotic exploration as graph construction , 1991, IEEE Trans. Robotics Autom..

[27]  Sven Koenig,et al.  Graph learning with a nearest neighbor approach , 1996, COLT '96.

[28]  Stephen Kwek,et al.  On a Simple Depth-First Search Strategy for Exploring Unknown Graphs , 1997, WADS.

[29]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  Andrzej Pelc,et al.  Exploring unknown undirected graphs , 1999, SODA '98.

[31]  K. Seaton,et al.  Stations, trains and small-world networks , 2003, cond-mat/0311254.

[32]  Andrew K. C. Wong,et al.  Entropy and Distance of Random Graphs with Application to Structural Pattern Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Leonid G. Kazovsky,et al.  HORNET: a packet-over-WDM multiple access metropolitan area ring network , 2000, IEEE Journal on Selected Areas in Communications.

[34]  Serge Chaumette,et al.  From Random Process to Chaotic Behavior in Swarms of UAVs , 2016, DIVANet@MSWiM.

[35]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[36]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[37]  Noga Alon,et al.  Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs , 1992, IEEE Trans. Inf. Theory.

[38]  Samik Ghosh,et al.  Integrating Pathways of Parkinson's Disease in a Molecular Interaction Map , 2013, Molecular Neurobiology.

[39]  Boleslaw K. Szymanski,et al.  Efficient and inefficient ant coverage methods , 2001, Annals of Mathematics and Artificial Intelligence.

[40]  Jeffrey G. Andrews,et al.  Stochastic geometry and random graphs for the analysis and design of wireless networks , 2009, IEEE Journal on Selected Areas in Communications.

[41]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[42]  Sergio D. Servetto,et al.  Constrained random walks on random graphs: routing algorithms for large scale wireless sensor networks , 2002, WSNA '02.

[43]  Luigi Fortuna,et al.  Does chaos work better than noise , 2002 .

[44]  Leandro dos Santos Coelho,et al.  Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system , 2008, Appl. Soft Comput..

[45]  Bala Kalyanasundaram,et al.  Constructing Competitive Tours from Local Information , 1994, Theor. Comput. Sci..

[46]  Michal Pluhacek,et al.  PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment , 2015 .

[47]  Rudolf Fleischer,et al.  Experimental Studies of Graph Traversal Algorithms , 2003, WEA.

[48]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[49]  Daohua Liu,et al.  Hybrid algorithm for ant colony optimization based on chaos technique , 2010, 2010 Sixth International Conference on Natural Computation.

[50]  Pascal Bouvry,et al.  A study of token traversal strategies on tree-based backbones for mobile ad hoc - delay tolerant networks , 2009, 2009 International Conference on Ultra Modern Telecommunications & Workshops.

[51]  J. C. Sprott,et al.  Asymmetric Bistability in the R\"{o}ssler System , 2017 .

[52]  Julien Clinton Sprott,et al.  ASYMMETRIC BISTABILITY IN THE RÖSSLER SYSTEM ∗ , 2017 .

[53]  Pascal Bouvry,et al.  Token Traversal Strategies of a Distributed Spanning Forest Algorithm in Mobile Ad Hoc - Delay Tolerant Networks , 2009, IAIT.

[54]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[55]  S. Rombouts,et al.  Loss of ‘Small-World’ Networks in Alzheimer's Disease: Graph Analysis of fMRI Resting-State Functional Connectivity , 2010, PloS one.

[56]  René Lozi,et al.  Emergence of Randomness from Chaos , 2012, Int. J. Bifurc. Chaos.

[57]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[58]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[59]  Israel A. Wagner,et al.  Vertex-Ant-Walk – A robust method for efficient exploration of faulty graphs , 2004, Annals of Mathematics and Artificial Intelligence.

[60]  A. Mayer,et al.  Germany-wide DWDM field trial: transparent connection of a long haul link and a multiclient metro network , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[61]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[62]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[63]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[64]  M. A. Aziz-Alaoui,et al.  Dynamics of a Hénon–Lozi-type map , 2001 .

[65]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[66]  K. S. Schlobach,et al.  Semantic Web Reasoning by Swarm Intelligence , 2009, ISWC 2009.

[67]  O. Rössler An equation for continuous chaos , 1976 .

[68]  Sylvain Mangiarotti,et al.  Topological analysis for designing a suspension of the Hénon map , 2015 .

[69]  Jonathan W. Berry,et al.  DFS: A Simple to Write Yet Difficult to Execute Benchmark , 2006, 2006 IEEE International Symposium on Workload Characterization.

[70]  Xin-She Yang,et al.  Firefly algorithm with chaos , 2013, Commun. Nonlinear Sci. Numer. Simul..

[71]  R. Lozi UN ATTRACTEUR ÉTRANGE (?) DU TYPE ATTRACTEUR DE HÉNON , 1978 .

[72]  A. Carena,et al.  RINGO: a WDM ring optical packet network demonstrator , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[73]  L. Chua,et al.  A universal circuit for studying and generating chaos. II. Strange attractors , 1993 .

[74]  Martin Rosalie Templates and subtemplates of R\"ossler attractors from a bifurcation diagram , 2016 .

[75]  René Lozi,et al.  Fast chaotic optimization algorithm based on locally averaged strategy and multifold chaotic attractor , 2012, Appl. Math. Comput..

[76]  V. Botella-Soler,et al.  Bifurcations in the Lozi map , 2011 .

[77]  Beom Jun Kim,et al.  Growing scale-free networks with tunable clustering. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.