Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study

In the macaque monkey ventral premotor cortex (F5), "canonical neurones" are active when the monkey observes an object and when the monkey grasps that object. In the same area, "mirror neurones" fire both when the monkey observes another monkey grasping an object and when the monkey grasps that object. We used event-related fMRI to investigate where in the human brain activation can be found that reflects both canonical and mirror neuronal activity. There was activation in the intraparietal and ventral limbs of the precentral sulcus when subjects observed objects and when they executed movements in response to the objects (canonical neurones). There was activation in the dorsal premotor cortex, the intraparietal cortex, the parietal operculum (SII), and the superior temporal sulcus when subjects observed gestures (mirror neurones). Finally, activations in the ventral premotor cortex and inferior frontal gyrus (area 44) were found when subjects imitated gestures and executed movements in response to objects. We suggest that in the human brain, the ventral limb of the precentral sulcus may form part of the area designated F5 in the macaque monkey. It is possible that area 44 forms an anterior part of F5, though anatomical studies suggest that it may be a transitional area between the premotor and prefrontal cortices.

[1]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[2]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[3]  K. Amunts,et al.  Advances in cytoarchitectonic mapping of the human cerebral cortex. , 2001, Neuroimaging clinics of North America.

[4]  K Friston,et al.  Signal-, set- and movement-related activity in the human brain: an event-related fMRI study. , 1999, Cerebral cortex.

[5]  G. Rizzolatti,et al.  Object representation in the ventral premotor cortex (area F5) of the monkey. , 1997, Journal of neurophysiology.

[6]  G. Rizzolatti,et al.  Localization of grasp representations in humans by PET: 1. Observation versus execution , 1996, Experimental Brain Research.

[7]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[8]  J. Kalaska,et al.  Differential relation of discharge in primary motor cortex and premotor cortex to movements versus actively maintained postures during a reaching task , 1996, Experimental Brain Research.

[9]  G. Rizzolatti,et al.  Action recognition in the premotor cortex. , 1996, Brain : a journal of neurology.

[10]  W. Prinz Perception and Action Planning , 1997 .

[11]  J. Decety,et al.  Does visual perception of object afford action? Evidence from a neuroimaging study , 2002, Neuropsychologia.

[12]  Jordan Grafman,et al.  Handbook of Neuropsychology , 1991 .

[13]  Ivan Toni,et al.  Prefrontal-basal ganglia pathways are involved in the learning of arbitrary visuomotor associations: a PET study , 1999, Experimental Brain Research.

[14]  G. J. Romanes,et al.  The Neocortex of Macaca mulatta , 1948 .

[15]  G. Rizzolatti,et al.  Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study , 2001, The European journal of neuroscience.

[16]  J. Kalaska,et al.  Deciding not to GO: neuronal correlates of response selection in a GO/NOGO task in primate premotor and parietal cortex. , 1995, Cerebral cortex.

[17]  B. Hommel,et al.  Effect anticipation and action control. , 2001, Journal of experimental psychology. Human perception and performance.

[18]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[19]  J. Ashburner,et al.  Multimodal Image Coregistration and Partitioning—A Unified Framework , 1997, NeuroImage.

[20]  W. Bank The Human Brain. Surface, Three-Dimensional Sectional Anatomy and MRI , 1993 .

[21]  J. Decety,et al.  Top down effect of strategy on the perception of human biological motion: a pet investigation. , 1998, Cognitive neuropsychology.

[22]  R. Passingham,et al.  The Attentional Role of the Left Parietal Cortex: The Distinct Lateralization and Localization of Motor Attention in the Human Brain , 2001, Journal of Cognitive Neuroscience.

[23]  M. Jeannerod The representing brain: Neural correlates of motor intention and imagery , 1994, Behavioral and Brain Sciences.

[24]  Scott T. Grafton,et al.  Localization of grasp representations in humans by positron emission tomography , 1996, Experimental Brain Research.

[25]  I Law,et al.  Categorization and category effects in normal object recognition A PET Study , 2000, Neuropsychologia.

[26]  M. Arbib,et al.  Language within our grasp , 1998, Trends in Neurosciences.

[27]  K. Amunts,et al.  Broca's region subserves imagery of motion: A combined cytoarchitectonic and fMRI study , 2000, Human brain mapping.

[28]  R. J. Seitz,et al.  A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study , 1999, The European journal of neuroscience.

[29]  Ivan Toni,et al.  Movement Preparation and Motor Intention , 2001, NeuroImage.

[30]  R. Hari,et al.  Modulated Activation of the Human SI and SII Cortices during Observation of Hand Actions , 2002, NeuroImage.

[31]  T. Allison,et al.  Social perception from visual cues: role of the STS region , 2000, Trends in Cognitive Sciences.

[32]  S Rozzi,et al.  Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque , 2001, The European journal of neuroscience.

[33]  H. Forssberg,et al.  Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. , 2001, Journal of neurophysiology.

[34]  R. Passingham,et al.  The Preparation, Execution and Suppression of Copied Movements in the Human Brain , 1996 .

[35]  Michael A. Arbib,et al.  Modeling parietal-premotor interactions in primate control of grasping , 1998, Neural Networks.

[36]  Olaf B. Paulson,et al.  The role of action knowledge in the comprehension of artefacts— A PET study , 2000, NeuroImage.

[37]  J. Mazziotta,et al.  Cortical mechanisms of human imitation. , 1999, Science.

[38]  R. Johansson,et al.  Cortical activity in precision- versus power-grip tasks: an fMRI study. , 2000, Journal of neurophysiology.

[39]  N. A. Borghese,et al.  Different Brain Correlates for Watching Real and Virtual Hand Actions , 2001, NeuroImage.

[40]  G. Rizzolatti,et al.  Understanding motor events: a neurophysiological study , 2004, Experimental Brain Research.

[41]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[42]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[43]  R. Turner,et al.  Characterizing Dynamic Brain Responses with fMRI: A Multivariate Approach , 1995, NeuroImage.

[44]  Driss Boussaoud,et al.  Frontal lobe mechanisms subserving vision-for-action versus vision-for-perception , 1995, Behavioural Brain Research.

[45]  R. Andersen,et al.  Intention-related activity in the posterior parietal cortex: a review , 2000, Vision Research.

[46]  Leslie G. Ungerleider,et al.  Discrete Cortical Regions Associated with Knowledge of Color and Knowledge of Action , 1995, Science.

[47]  A. Goldman,et al.  Mirror neurons and the simulation theory of mind-reading , 1998, Trends in Cognitive Sciences.

[48]  D. Perani,et al.  The neural correlates of verb and noun processing. A PET study. , 1999, Brain : a journal of neurology.

[49]  Hatem Alkadhi,et al.  Identification of multiple nonprimary motor cortical areas with simple movements , 2001, Brain Research Reviews.

[50]  G. Rizzolatti,et al.  Premotor cortex and the recognition of motor actions. , 1996, Brain research. Cognitive brain research.

[51]  A. Meltzoff,et al.  Imitation of Facial and Manual Gestures by Human Neonates , 1977, Science.

[52]  J. Decety,et al.  Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta‐analysis , 2001, Human brain mapping.

[53]  A. Georgopoulos,et al.  Parietal cortex neurons of the monkey related to the visual guidance of hand movement , 1990, Experimental Brain Research.

[54]  A. Meltzoff,et al.  Does the End Justify the Means? A PET Exploration of the Mechanisms Involved in Human Imitation , 2002, NeuroImage.

[55]  S. P. Wise,et al.  Set-related neuronal activity in the premotor cortex of rhesus monkeys: effects of changes in motor set , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[56]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[57]  Alan C. Evans,et al.  Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis , 1999, The European journal of neuroscience.

[58]  E. Procyk,et al.  Brain activity during observation of actions. Influence of action content and subject's strategy. , 1997, Brain : a journal of neurology.

[59]  Z. Pylyshyn,et al.  Vision and Action: The Control of Grasping , 1990 .

[60]  Alex Martin,et al.  Representation of Manipulable Man-Made Objects in the Dorsal Stream , 2000, NeuroImage.

[61]  G. Rizzolatti,et al.  Grasping objects and grasping action meanings: the dual role of monkey rostroventral premotor cortex (area F5). , 1998, Novartis Foundation symposium.

[62]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 2004, Experimental Brain Research.

[63]  S Clarke,et al.  Direct interhemispheric visual input to human speech areas , 1997, Human brain mapping.

[64]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  U. Frith Mind Blindness and the Brain in Autism , 2001, Neuron.

[66]  B. Mazoyer,et al.  FMRI and PET of Self-Paced Finger Movement: Comparison of Intersubject Stereotaxic Averaged Data , 1999, NeuroImage.

[67]  D. Boussaoud,et al.  Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways , 2002, Experimental Brain Research.

[68]  D. V. von Cramon,et al.  Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. , 2001, Brain research. Cognitive brain research.

[69]  J. Hermsdörfer,et al.  Cortical Correlates of Gesture Processing: Clues to the Cerebral Mechanisms Underlying Apraxia during the Imitation of Meaningless Gestures , 2001, NeuroImage.

[70]  F. Lacquaniti,et al.  Visuomotor Transformations for Reaching to Memorized Targets: A PET Study , 1997, NeuroImage.

[71]  M. Petrides Comparative architectonic analysis of the human and the macaque frontal cortex , 1994 .

[72]  R. Passingham,et al.  How do visual instructions influence the motor system? , 1998, Novartis Foundation symposium.

[73]  R. Passingham,et al.  Multiple Movement Representations in the Human Brain: An Event-Related fMRI Study , 2002, Journal of Cognitive Neuroscience.

[74]  Scott T. Grafton,et al.  Premotor Cortex Activation during Observation and Naming of Familiar Tools , 1997, NeuroImage.

[75]  A. Meltzoff Understanding the Intentions of Others: Re-Enactment of Intended Acts by 18-Month-Old Children. , 1995, Developmental psychology.

[76]  S. Dehaene,et al.  Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe , 2002, Neuron.

[77]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[78]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[79]  A. Meltzoff,et al.  A PET Exploration of the Neural Mechanisms Involved in Reciprocal Imitation , 2002, NeuroImage.

[80]  Warren S. McCulloch,et al.  The isocortex of the chimpanzee. , 1950 .

[81]  J Sergent,et al.  Distributed neural network underlying musical sight-reading and keyboard performance. , 1992, Science.