What Does the Anatomical Organization of the Entorhinal Cortex Tell Us?

The entorhinal cortex is commonly perceived as a major input and output structure of the hippocampal formation, entertaining the role of the nodal point of cortico-hippocampal circuits. Superficial layers receive convergent cortical information, which is relayed to structures in the hippocampus, and hippocampal output reaches deep layers of entorhinal cortex, that project back to the cortex. The finding of the grid cells in all layers and reports on interactions between deep and superficial layers indicate that this rather simplistic perception may be at fault. Therefore, an integrative approach on the entorhinal cortex, that takes into account recent additions to our knowledge database on entorhinal connectivity, is timely. We argue that layers in entorhinal cortex show different functional characteristics most likely not on the basis of strikingly different inputs or outputs, but much more likely on the basis of differences in intrinsic organization, combined with very specific sets of inputs. Here, we aim to summarize recent anatomical data supporting the notion that the traditional description of the entorhinal cortex as a layered input-output structure for the hippocampal formation does not give the deserved credit to what this structure might be contributing to the overall functions of cortico-hippocampal networks.

[1]  W. Möllendorff,et al.  Handbuch der Mikroskopischen Anatomie des Menschen , 1958 .

[2]  M. T. Shipley,et al.  Presubiculum afferents to the entorhinal area and the Papez circuit. , 1974, Brain research.

[3]  M. T. Shipley The topographical and laminar organization of the presubiculum's projection to the ipsi‐ and contralateral entorhinal cortex in the guinea pig , 1975, The Journal of comparative neurology.

[4]  D. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents , 1975, Brain Research.

[5]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections , 1975, Brain Research.

[6]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents , 1975, Brain Research.

[7]  O. Steward,et al.  Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat , 1976, The Journal of comparative neurology.

[8]  P. Somogyi A specific ‘axo-axonal’ interneuron in the visual cortex of the rat , 1977, Brain Research.

[9]  A. Hamberger,et al.  Glutamate as transmitter of hippocampal perforant path , 1977, Nature.

[10]  R. M. Beckstead Afferent connections of the entorhinal area in the rat as demonstrated by retrograde cell-labeling with horseradish peroxidase , 1978, Brain Research.

[11]  F. L. D. Silva,et al.  An olfactory input to the hippocampus of the cat: Field potential analysis , 1980, Brain Research.

[12]  A. Siegel,et al.  A projection from the entorhinal cortex to the nucleus accumbens in the rat , 1981, Brain Research.

[13]  P. Coleman,et al.  Neurons of origin of the perforant path , 1981, Experimental Neurology.

[14]  F. Wouterlood,et al.  Terminations of olfactory afferents on layer II and III neurons in the entorhinal area: Degeneration-golgi-electron microscopic study in the rat , 1983, Neuroscience Letters.

[15]  P. Somogyi,et al.  Glutamate decarboxylase‐immunoreactive terminals of Golgi‐impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat's visual cortex , 1983, The Journal of comparative neurology.

[16]  A. Alonso,et al.  A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain , 1984, The Journal of comparative neurology.

[17]  C. Köhler,et al.  Morphological details of the projection from the presubiculum to the entorhinal area as shown with the novel PHA-L immunohistochemical tracing method in the rat , 1984, Neuroscience Letters.

[18]  W M Cowan,et al.  The commissural connections of the monkey hippocampal formation , 1984, The Journal of comparative neurology.

[19]  M M Mesulam,et al.  Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. , 1984, Brain : a journal of neurology.

[20]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[21]  G. Paxinos The Rat nervous system , 1985 .

[22]  D. Amaral,et al.  The afferent connections of the substantia innominata in the monkey, Macaca fascicularis , 1985, The Journal of comparative neurology.

[23]  E. Mugnaini,et al.  Projection of olfactory bulb efferents to layer I GABAergic neurons in the entorhinal area. Combination of anterograde degeneration and immunoelectron microscopy in rat , 1985, Brain Research.

[24]  C. Köhler Intrinsic connections of the retrohippocampal region in the rat brain. II. The medial entorhinal area. , 1986, The Journal of comparative neurology.

[25]  M Mishkin,et al.  The origin, course, and termination of the hippocampothalamic projections in the macaque , 1986, The Journal of comparative neurology.

[26]  L. Swanson,et al.  Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  M. Witter,et al.  Connections of the parahippocampal cortex in the cat. V. Intrinsic connections; comments on input/output connections with the hippocampus , 1986, The Journal of comparative neurology.

[28]  H. Groenewegen,et al.  Connections of the parahippocampal cortex. I. Cortical afferents , 1986, The Journal of comparative neurology.

[29]  V. Chan‐Palay,et al.  Neuropeptide Y innervation of the hippocampal region in the rat and monkey brain , 1986, The Journal of comparative neurology.

[30]  C. Köhler Intrinsic connections of the retrohippocampal region in the rat brain. II. The medial entorhinal area , 1986, The Journal of comparative neurology.

[31]  D. Amaral,et al.  The entorhinal cortex of the monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[32]  D. Amaral,et al.  The entorhinal cortex of the monkey: III. Subcortical afferents , 1987, The Journal of comparative neurology.

[33]  T. Nagatsu,et al.  Immunohistochemical visualization of glutamate- and aspartate-containing nerve terminal pools in the rat limbic structures , 1987, Brain Research.

[34]  D. Amaral,et al.  The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis , 1987, The Journal of comparative neurology.

[35]  M. Delong,et al.  Fiber pathways of basal forebrain cholinergic neurons in monkeys , 1987, Brain Research.

[36]  D. Amaral,et al.  The entorhinal cortex of the monkey: I. Cytoarchitectonic organization , 1987, The Journal of comparative neurology.

[37]  M. P. Witter,et al.  Reciprocal connections of the insular and piriform claustrum with limbic cortex: An anatomical study in the cat , 1988, Neuroscience.

[38]  S. B. Kater,et al.  Interactions between entorhinal axons and target hippocampal neurons: A role for glutamate in the development of hippocampal circuitry , 1988, Neuron.

[39]  D L Rosene,et al.  A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices , 1988, The Journal of comparative neurology.

[40]  D. Finch,et al.  Feedforward inhibition of the rat entorhinal cortex and subicular complex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  C. Köhler Intrinsic connections of the retrohippocampal region in the rat brain: III. The lateral entorhinal area , 1988, The Journal of comparative neurology.

[42]  R. Bartesaghi,et al.  Electrophysiological analysis of the dorsal hippocampal commissure projections to the entorhinal area , 1988, Neuroscience.

[43]  M. Witter,et al.  Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region , 1989, Progress in Neurobiology.

[44]  D. Amaral,et al.  Topographical organization of the entorhinal projection to the dentate gyrus of the monkey , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  E. Buhl,et al.  Morphology of identified entorhinal neurons projecting to the hippocampus. A light microscopical study combining retrograde tracing and intracellular injection , 1989, Neuroscience.

[46]  M. P. Witter,et al.  Connectivity of the rat hippocampus , 1989 .

[47]  R. Bartesaghi,et al.  Electrophysiological analysis of the hippocampal projections to the entorhinal area , 1989, Neuroscience.

[48]  J. Rı́o,et al.  Long-lasting neurochemical and functional changes in rats induced by neonatal administration of substance P antiserum , 1989, Brain Research.

[49]  F. Wouterlood,et al.  Hippocampal fibers make synaptic contacts with glutamate decar☐ylase-immunoreactive neurons in the rat nucleus accumbens , 1990, Brain Research.

[50]  E. Buhl,et al.  Disynaptic olfactory input to the hippocampus mediated by stellate cells in the entorhinal cortex , 1990, The Journal of comparative neurology.

[51]  Nobuaki Tamamaki,et al.  Disposition of the slab‐like modules formed by axon branches originating from single CA1 pyramidal neurons in the rat hippocampus , 1990, The Journal of comparative neurology.

[52]  M. Witter,et al.  Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris‐leucoagglutinin , 1990, The Journal of comparative neurology.

[53]  F. Wouterlood,et al.  Innervation of Entorhinal Principal Cells by Neurons of the Nucleus Reuniens Thalami. Anterograde PHA‐L Tracing Combined with Retrograde Fluorescent Tracing and Intracellular Injection with Lucifer Yellow in the Rat , 1991, The European journal of neuroscience.

[54]  J. McGinty,et al.  A glutamate antagonist blocks perforant path stimulation-induced reduction of dynorphin peptide and prodynorphin mRNA levels in rat hippocampus , 1991, Brain Research.

[55]  D. Amaral,et al.  Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex , 1991, The Journal of comparative neurology.

[56]  D. Amaral,et al.  Organization of CA1 projections to the subiculum: A PHA‐L analysis in the rat , 1991, Hippocampus.

[57]  E. Buhl,et al.  Ultrastructure and aspects of functional organization of pyramidal and nonpyramidal entorhinal projection neurons contributing to the perforant path , 1991, The Journal of comparative neurology.

[58]  H. Braak,et al.  The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases , 1992, Neuroscience Research.

[59]  J. Michael Wyass,et al.  Connections between the retrosplenial cortex and the hippocampal formation in the rat: A review , 1992, Hippocampus.

[60]  N. Tamamaki,et al.  Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure‐injection of neurobiotin , 1993, Hippocampus.

[61]  R. S. Jones,et al.  Basket-like interneurones in layer II of the entorhinal cortex exhibit a powerful NMDA-mediated synaptic excitation , 1993, Neuroscience Letters.

[62]  M. Witter,et al.  Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: An anterograde tracing study in the rat , 1993, The Journal of comparative neurology.

[63]  M. Frotscher,et al.  Chandelier cells in the hippocampal formation of the rat: The entorhinal area and subicular complex , 1993, The Journal of comparative neurology.

[64]  A. Alonso,et al.  Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. , 1993, Journal of neurophysiology.

[65]  A. Alonso,et al.  Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. , 1993, Journal of neurophysiology.

[66]  M. Witter Organization of the entorhinal—hippocampal system: A review of current anatomical data , 1993, Hippocampus.

[67]  D. Amaral Emerging principles of intrinsic hippocampal organization , 1993, Current Opinion in Neurobiology.

[68]  M. P. Witter,et al.  Multiple anterograde tracing, combining Phaseolus vulgaris leucoagglutinin with rhodamine- and biotin-conjugated dextran amine , 1994, Journal of Neuroscience Methods.

[69]  B. Berger,et al.  Neurochemical development of the hippocampal region in the fetal rhesus monkey. II. Immunocytochemistry of peptides, calcium‐binding proteins, DARPP‐32, and monoamine innervation in the entorhinal cortex by the end of gestation , 1994, Hippocampus.

[70]  W. Levy,et al.  Ultrastructural identification of entorhinal cortical synapses in CA1 stratum lacunosum‐moleculare of the rat , 1994, Hippocampus.

[71]  L. Swanson,et al.  Organization of projections from the ventromedial nucleus of the hypothalamus: A Phaseolus vulgaris‐Leucoagglutinin study in the rat , 1994, The Journal of comparative neurology.

[72]  W. Suzuki,et al.  Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  Roland S. G. Jones,et al.  Synaptic and intrinsic properties of neurons of origin of the perforant path in layer II of the rat entorhinal cortex in vitro , 1994, Hippocampus.

[74]  Electrophysiology and morphology of a new type of cell within layer II of the rat lateral entorhinal cortex in vitro , 1995, Neuroscience Letters.

[75]  M. Witter,et al.  Parvalbumin-immunoreactive neurons in the entorhinal cortex of the rat: localization, morphology, connectivity and ultrastructure , 1995, Journal of neurocytology.

[76]  N. Tamamaki,et al.  Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats , 1995, The Journal of comparative neurology.

[77]  R. Insausti,et al.  The human entorhinal cortex: A cytoarchitectonic analysis , 1995, The Journal of comparative neurology.

[78]  D. Finch,et al.  Neurophysiology and neuropharmacology of projections from entorhinal cortex to striatum in the rat , 1995, Brain Research.

[79]  D. Amaral,et al.  Perirhinal and postrhinal cortices of the rat: A review of the neuroanatomical literature and comparison with findings from the monkey brain , 1995, Hippocampus.

[80]  E. Audinat,et al.  Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents , 1995, The Journal of comparative neurology.

[81]  M. Frotscher,et al.  A Novel Entorhinal Projection to the Rat Dentate Gyrus: Direct Innervation of Proximal Dendrites and Cell Bodies of Granule Cells and GABAergic Neurons , 1996, The Journal of Neuroscience.

[82]  M. Witter,et al.  Entorhinal-Hippocampal Interactions Revealed by Real-Time Imaging , 1996, Science.

[83]  T. Dugladze,et al.  Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat , 1997, Neuroscience.

[84]  A. Pitkänen,et al.  Distribution of calretinin‐immunoreactivity in the rat entorhinal cortex: Coexistence with GABA , 1997, The Journal of comparative neurology.

[85]  A. Alonso,et al.  Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. , 1997, Journal of neurophysiology.

[86]  A. Alonso,et al.  Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro , 1997, Neuroscience.

[87]  S. Totterdell,et al.  Topographical organization of projections from the entorhinal cortex to the striatum of the rat , 1997, Neuroscience.

[88]  M. Witter,et al.  Parallel input to the hippocampal memory system through peri‐ and postrhinal cortices , 1997, Neuroreport.

[89]  M. Witter,et al.  Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents , 1998, Hippocampus.

[90]  E. Bullmore,et al.  Society for Neuroscience Abstracts , 1997 .

[91]  R. Desimone,et al.  Object and place memory in the macaque entorhinal cortex. , 1997, Journal of neurophysiology.

[92]  T. Gloveli,et al.  Frequency-dependent information flow from the entorhinal cortex to the hippocampus. , 1997, Journal of neurophysiology.

[93]  Floris G. Wouterlood,et al.  GABAergic Presubicular Projections to the Medial Entorhinal Cortex of the Rat , 1997, The Journal of Neuroscience.

[94]  A. Alonso,et al.  Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex , 1997, Hippocampus.

[95]  Kara L. Agster,et al.  Cortical efferents of the perirhinal, postrhinal, and entorhinal cortices of the rat , 2009, Hippocampus.

[96]  A. McDonald Cortical pathways to the mammalian amygdala , 1998, Progress in Neurobiology.

[97]  D. Amaral,et al.  Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus , 1998, The Journal of comparative neurology.

[98]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[99]  Comparison of the electrophysiology and morphology of layers III and II neurons of the rat medial entorhinal cortex in vitro , 1998, The European journal of neuroscience.

[100]  D. Amaral,et al.  Entorhinal cortex of the rat: Organization of intrinsic connections , 1998, The Journal of comparative neurology.

[101]  D. Amaral,et al.  Perirhinal and postrhinal cortices of the rat: Interconnectivity and connections with the entorhinal cortex , 1998, The Journal of comparative neurology.

[102]  A. Pitkänen,et al.  Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat , 1999, The Journal of comparative neurology.

[103]  R. Vertes,et al.  Projections of the median raphe nucleus in the rat , 1999, The Journal of comparative neurology.

[104]  J. Michael Wyss,et al.  Efferent connections of the anteromedial nucleus of the thalamus of the rat , 1999, Brain Research Reviews.

[105]  M. Witter,et al.  Calretinin in the entorhinal cortex of the rat: Distribution, morphology, ultrastructure of neurons, and co‐localization with γ‐aminobutyric acid and parvalbumin , 2000, The Journal of comparative neurology.

[106]  D. Amaral,et al.  Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study , 2000, The Journal of comparative neurology.

[107]  F. H. Lopes da Silva,et al.  Cortico‐hippocampal communication by way of parallel parahippocampal‐subicular pathways , 2000, Hippocampus.

[108]  M. Witter,et al.  Anatomical Organization of the Parahippocampal‐Hippocampal Network , 2000, Annals of the New York Academy of Sciences.

[109]  F. Wouterlood,et al.  Sparse colocalization of somatostatin‐ and GABA‐immunoreactivity in the entorhinal cortex of the rat , 2000, Hippocampus.

[110]  D. Amaral,et al.  Hippocampal‐neocortical interaction: A hierarchy of associativity , 2000, Hippocampus.

[111]  M. Witter,et al.  Differential distribution of barrel or visual cortex Evoked responses along the rostro-caudal axis of the peri- and postrhinal cortices , 2000, Brain Research.

[112]  R. Burwell The Parahippocampal Region: Corticocortical Connectivity , 2000, Annals of the New York Academy of Sciences.

[113]  R. S. Jones,et al.  Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro , 2000, Neuroscience.

[114]  D. Amaral,et al.  Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex , 2000, The Journal of comparative neurology.

[115]  A. Ylinen,et al.  Reciprocal Connections between the Amygdala and the Hippocampal Formation, Perirhinal Cortex, and Postrhinal Cortex in Rat: A Review , 2000, Annals of the New York Academy of Sciences.

[116]  F. H. Lopes da Silva,et al.  Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum , 2001, Hippocampus.

[117]  J. Baizer Serotonergic innervation of the primate claustrum , 2001, Brain Research Bulletin.

[118]  T. Dugladze,et al.  Properties of entorhinal cortex deep layer neurons projecting to the rat dentate gyrus , 2001, The European journal of neuroscience.

[119]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[120]  D. Amaral,et al.  Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey , 2002, Hippocampus.

[121]  M. Moser,et al.  Reduced fear expression after lesions of the ventral hippocampus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[122]  D. Amaral,et al.  Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex , 2000, The Journal of comparative neurology.

[123]  Floris G. Wouterlood Spotlight on the neurones (I): cell types, local connectivity, microcircuits, and distribution of markers , 2002 .

[124]  M. Witter,et al.  Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat , 2003, Hippocampus.

[125]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[126]  T. van Groen,et al.  The entorhinal cortex of the mouse: Organization of the projection to the hippocampal formation , 2003, Hippocampus.

[127]  M. Witter,et al.  Topographical and laminar organization of subicular projections to the parahippocampal region of the rat , 2003, The Journal of comparative neurology.

[128]  F. H. Lopes da Silva,et al.  Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re‐entrance in the hippocampal–entorhinal system , 2003, The European journal of neuroscience.

[129]  M. Witter,et al.  Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit. , 2003, Journal of neurophysiology.

[130]  S. Leurgans,et al.  MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD , 2004, Neurobiology of Aging.

[131]  F. H. Lopes da Silva,et al.  Two reentrant pathways in the hippocampal‐entorhinal system , 2004, Hippocampus.

[132]  M. Witter,et al.  Projections from the presubiculum and the parasubiculum to morphologically characterized entorhinal-hippocampal projection neurons in the rat , 2004, Experimental Brain Research.

[133]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[134]  H. Groenewegen,et al.  Inputs from the olfactory bulb and olfactory cortex to the entorhinal cortex in the cat , 1984, Experimental Brain Research.

[135]  Floris G Wouterlood,et al.  Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat , 2004, Brain Research.

[136]  M. Witter,et al.  Afferents to the seizure-sensitive neurons in layer III of the medial entorhinal area: a tracing study in the rat , 1996, Experimental Brain Research.

[137]  O. Isacson,et al.  Relationships between stress protein induction and NMDA-mediated neuronal death in the entorhinal cortex , 2004, Experimental Brain Research.

[138]  M. Witter CHAPTER 21 – Hippocampal Formation , 2004 .

[139]  E. G. Jones,et al.  Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities , 2004, Experimental Brain Research.

[140]  A. Habets,et al.  Autoradiography of the olfactory-hippocampal pathway in the cat with special reference to the perforant path , 1980, Experimental Brain Research.

[141]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[142]  K. Lingenhöhl,et al.  Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domains , 2004, Experimental Brain Research.

[143]  V. Chan‐Palay,et al.  Somatostatin and vasoactive intestinal polypeptide-like immunoreactive cells and terminals in the retrohippocampal region of the rat brain , 2004, Anatomy and Embryology.

[144]  V. Chan‐Palay,et al.  Neurons and terminals in the retrohippocampal region in the rat's brain identified by anti-γ-aminobutyric acid and anti-glutamic acid decarboxylase immunocytochemistry , 2004, Anatomy and Embryology.

[145]  Fabian Kloosterman,et al.  Presubiculum Stimulation In Vivo Evokes Distinct Oscillations in Superficial and Deep Entorhinal Cortex Layers in Chronic Epileptic Rats , 2005, The Journal of Neuroscience.

[146]  V. Di Maio,et al.  Topographic activation of the medial entorhinal cortex by presubicular commissural projections , 2005, The Journal of comparative neurology.

[147]  May-Britt Moser,et al.  Place cells, spatial maps and the population code for memory , 2005, Current Opinion in Neurobiology.

[148]  M. Moser,et al.  Spatial Memory in the Rat Requires the Dorsolateral Band of the Entorhinal Cortex , 2005, Neuron.

[149]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[150]  F. D. da Silva,et al.  Physiological Changes in Chronic Epileptic Rats Are Prominent in Superficial Layers of the Medial Entorhinal Area , 2005, Epilepsia.

[151]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[152]  M. P. Witter,et al.  Entorhinal projections terminate onto principal neurons and interneurons in the subiculum: A quantitative electron microscopical analysis in the rat , 2005, Neuroscience.

[153]  B. Tahvildari,et al.  Morphological and electrophysiological properties of lateral entorhinal cortex layers II and III principal neurons , 2005, The Journal of comparative neurology.

[154]  E. Moser,et al.  Spatial representation and the architecture of the entorhinal cortex , 2006, Trends in Neurosciences.

[155]  Menno P. Witter,et al.  Connections of the subiculum of the rat: Topography in relation to columnar and laminar organization , 2006, Behavioural Brain Research.

[156]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[157]  M. Moser,et al.  Fast rate coding in hippocampal CA3 cell ensembles , 2006, Hippocampus.

[158]  G. Einevoll,et al.  From grid cells to place cells: A mathematical model , 2006, Hippocampus.

[159]  P. Buckmaster,et al.  Hyperexcitability, Interneurons, and Loss of GABAergic Synapses in Entorhinal Cortex in a Model of Temporal Lobe Epilepsy , 2006, The Journal of Neuroscience.

[160]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[161]  Kara L. Agster,et al.  Functional neuroanatomy of the parahippocampal region in the rat: The perirhinal and postrhinal cortices , 2007, Hippocampus.

[162]  M. Witter,et al.  Cingulate cortex projections to the parahippocampal region and hippocampal formation in the rat , 2007, Hippocampus.

[163]  D. Amaral,et al.  Entorhinal cortex of the monkey: VII. Intrinsic connections , 2007, The Journal of comparative neurology.

[164]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: III. Cortical efferents , 2003, The Journal of comparative neurology.

[165]  Kara L. Agster,et al.  Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas , 2007, Hippocampus.

[166]  H. Eichenbaum,et al.  The medial temporal lobe and recognition memory. , 2007, Annual review of neuroscience.

[167]  M. Witter The perforant path: projections from the entorhinal cortex to the dentate gyrus. , 2007, Progress in brain research.

[168]  V. Calhoun,et al.  Selective changes of resting-state networks in individuals at risk for Alzheimer's disease , 2007, Proceedings of the National Academy of Sciences.

[169]  M. Witter Intrinsic and extrinsic wiring of CA3: indications for connectional heterogeneity. , 2007, Learning & memory.

[170]  Natalie L. M. Cappaert,et al.  Spatiotemporal analyses of interactions between entorhinal and CA1 projections to the subiculum in rat brain slices , 2007, Hippocampus.

[171]  S. Rombouts,et al.  Reduced resting-state brain activity in the "default network" in normal aging. , 2008, Cerebral cortex.

[172]  M. Moser,et al.  Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex , 2008, Neuron.

[173]  Riichi Kajiwara,et al.  Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1—An anatomical study in the rat , 2008, Hippocampus.

[174]  D. Amaral,et al.  The Hippocampal Formation , 2009 .

[175]  B. Biswal,et al.  Functional connectivity of default mode network components: Correlation, anticorrelation, and causality , 2009, Human brain mapping.