Input-Output Balanced Framework for Long-Tailed Lidar Semantic Segmentation

A thorough and holistic scene understanding is crucial for autonomous vehicles, where LiDAR semantic segmentation plays an indispensable role. However, most existing methods focus on the network design while neglecting the inherent difficulty, i.e, imbalanced data distribution in the realistic dataset (also named long-tailed distribution), which narrows down the capability of state-of-the-art methods. In this paper, we propose an input-output balanced framework to handle the issue of long-tailed distribution. Specifically, for the input space, we synthesize these tailed instances from mesh models and well simulate the position and density distribution of LiDAR scan, which enhances the input data balance and improves the data diversity. For the output space, a multi-head block is proposed to group different categories based on their shapes and instance amounts, which alleviates the biased representation of dominating category during the feature learning. We evaluate the proposed model on two large-scale datasets, i.e, SemanticKITTI and nuScenes, where state-of-the-art results demonstrate its effectiveness. The proposed new modules can also be used as a plug-and-play, and we apply them on various backbones and datasets, showing its good generalization ability.

[1]  Bo Yang,et al.  RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Xinge Zhu,et al.  SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds , 2020, ECCV.

[3]  Cyrill Stachniss,et al.  SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Philip David,et al.  PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Xiang Yu,et al.  Feature Transfer Learning for Face Recognition With Under-Represented Data , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Sheng Tang,et al.  Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Yi Jiang,et al.  Learning to Segment the Tail , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Kurt Keutzer,et al.  SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Tian Zheng,et al.  OccuSeg: Occupancy-Aware 3D Instance Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Xiaogang Wang,et al.  Factors in Finetuning Deep Model for Object Detection with Long-Tail Distribution , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Eren Erdal Aksoy,et al.  SalsaNext: Fast Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving , 2020, ArXiv.

[12]  Qiang Xu,et al.  nuScenes: A Multimodal Dataset for Autonomous Driving , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Bo Li,et al.  SECOND: Sparsely Embedded Convolutional Detection , 2018, Sensors.

[14]  Chen Huang,et al.  Learning Deep Representation for Imbalanced Classification , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Silvio Savarese,et al.  SEGCloud: Semantic Segmentation of 3D Point Clouds , 2017, 2017 International Conference on 3D Vision (3DV).

[16]  Xinge Zhu,et al.  Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Kurt Keutzer,et al.  SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[18]  Hui Han,et al.  Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning , 2005, ICIC.

[19]  Laurens van der Maaten,et al.  3D Semantic Segmentation with Submanifold Sparse Convolutional Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Cyrill Stachniss,et al.  RangeNet ++: Fast and Accurate LiDAR Semantic Segmentation , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Xinge Zhu,et al.  Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic Segmentation , 2020, ArXiv.

[23]  Xinge Zhu,et al.  Reconfigurable Voxels: A New Representation for LiDAR-Based Point Clouds , 2020, CoRL.

[24]  Yang Song,et al.  Class-Balanced Loss Based on Effective Number of Samples , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Vladlen Koltun,et al.  Tangent Convolutions for Dense Prediction in 3D , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[26]  Weihong Deng,et al.  Unequal-Training for Deep Face Recognition With Long-Tailed Noisy Data , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Bichen Wu,et al.  SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud Segmentation , 2020, ECCV.

[28]  Xinge Zhu,et al.  LiDAR-based Panoptic Segmentation via Dynamic Shifting Network , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[30]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).