Approximation Algorithms for Maximin Fair Division

We consider the problem of allocating indivisible goods fairly among n agents who have additive and submodular valuations for the goods. Our fairness guarantees are in terms of the maximin share, w...

[1]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[2]  Mohammad Ghodsi,et al.  Fair Allocation of Indivisible Goods: Improvements and Generalizations , 2017, EC.

[3]  Ariel D. Procaccia,et al.  Spliddit: unleashing fair division algorithms , 2015, SECO.

[4]  L. Shapley,et al.  On cores and indivisibility , 1974 .

[5]  Amin Saberi,et al.  An Approximation Algorithm for Max-Min Fair Allocation of Indivisible Goods , 2010, SIAM J. Comput..

[6]  Ariel D. Procaccia,et al.  The Unreasonable Fairness of Maximum Nash Welfare , 2016, EC.

[7]  Vahab S. Mirrokni,et al.  Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints , 2009, SIAM J. Discret. Math..

[8]  Sylvain Bouveret,et al.  Characterizing conflicts in fair division of indivisible goods using a scale of criteria , 2016, Autonomous Agents and Multi-Agent Systems.

[9]  Nikhil Bansal,et al.  The Santa Claus problem , 2006, STOC '06.

[10]  J. Vondrák,et al.  Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes , 2014 .

[11]  Gerhard J. Woeginger,et al.  A polynomial-time approximation scheme for maximizing the minimum machine completion time , 1997, Oper. Res. Lett..

[12]  Jan Vondrák Symmetry and Approximability of Submodular Maximization Problems , 2013, SIAM J. Comput..

[13]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[14]  Vincent Conitzer,et al.  Handbook of Computational Social Choice , 2016 .

[15]  Sanjeev Khanna,et al.  On Allocating Goods to Maximize Fairness , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Bang Ye Wu,et al.  An analysis of the LPT algorithm for the max-min and the min-ratio partition problems , 2005, Theor. Comput. Sci..

[17]  Judd B. Kessler,et al.  Course Match: A Large-Scale Implementation of Approximate Competitive Equilibrium from Equal Incomes for Combinatorial Allocation , 2015, Oper. Res..

[18]  Jan Vondrák,et al.  Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[19]  Eric Budish The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes , 2011, Journal of Political Economy.

[20]  Ivona Bezáková,et al.  Allocating indivisible goods , 2005, SECO.

[21]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[22]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[23]  H. Moulin Uniform externalities: Two axioms for fair allocation , 1990 .

[24]  Elchanan Mossel,et al.  On approximately fair allocations of indivisible goods , 2004, EC '04.