Alternating Hierarchies for Time-Space Tradeoffs

Nepomnjascii's Theorem states that for all 0 0 the class of languages recognized in nondeterministic time n^k and space n^\epsilon, NTISP[n^k, n^\epsilon ], is contained in the linear time hierarchy. By considering restrictions on the size of the universal quantifiers in the linear time hierarchy, this paper refines Nepomnjascii's result to give a sub- hierarchy, Eu-LinH, of the linear time hierarchy that is contained in NP and which contains NTISP[n^k, n^\epsilon ]. Hence, Eu-LinH contains NL and SC. This paper investigates basic structural properties of Eu-LinH. Then the relationships between Eu-LinH and the classes NL, SC, and NP are considered to see if they can shed light on the NL = NP or SC = NP questions. Finally, a new hierarchy, zeta -LinH, is defined to reduce the space requirements needed for the upper bound on Eu-LinH.

[1]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[2]  Lance Fortnow,et al.  Time-Space Tradeos for Satisability , 1997 .

[3]  Ryan Williams Better time-space lower bounds for SAT and related problems , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[4]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[5]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[6]  Endre Szemerédi,et al.  On determinism versus non-determinism and related problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[7]  Jim Kadin The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Collapses , 1988, SIAM J. Comput..

[8]  Stanislav Zák,et al.  A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..

[9]  Lance Fortnow,et al.  Time-Space Tradeoffs for Satisfiability , 2000, J. Comput. Syst. Sci..

[10]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[11]  Richard J. Lipton,et al.  Time-space lower bounds for satisfiability , 2005, JACM.

[12]  Richard J. Lipton,et al.  On the complexity of SAT , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[13]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[14]  Stephen A. Bloch,et al.  Sharply Bounded Alternation and Quasilinear Time , 1998, Theory of Computing Systems.