Symbolic Models and Emergent Models: A Review

There exists a large conceptual gap between symbolic models and emergent models for the mind. Many emergent models work on low-level sensory data, while many symbolic models deal with high-level abstract (i.e., action) symbols. There has been relatively little study on intermediate representations, mainly because of a lack of knowledge about how representations fully autonomously emerge inside the closed brain skull, using information from the exposed two ends (the sensory end and the motor end). As reviewed here, this situation is changing. A fundamental challenge for emergent models is abstraction, which symbolic models enjoy through human handcrafting. The term abstract refers to properties disassociated with any particular form. Emergent abstraction seems possible, although the brain appears to never receive a computer symbol (e.g., ASCII code) or produce such a symbol. This paper reviews major agent models with an emphasis on representation. It suggests two different ways to relate symbolic representations with emergent representations: One is based on their categorical definitions. The other considers that a symbolic representation corresponds to a brain's outside behaviors observed and handcrafted by other outside human observers; but an emergent representation is inside the brain.

[1]  Maja J. Mataric,et al.  Reinforcement Learning in the Multi-Robot Domain , 1997, Auton. Robots.

[2]  Alex Waibel,et al.  Readings in speech recognition , 1990 .

[3]  Thad Starner,et al.  Visual Recognition of American Sign Language Using Hidden Markov Models. , 1995 .

[4]  Juyang Weng,et al.  Three theorems: Brain-like networks logically reason and optimally generalize , 2011, The 2011 International Joint Conference on Neural Networks.

[5]  Yuntao Cui,et al.  View-based hand segmentation and hand-sequence recognition with complex backgrounds , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[6]  G. F. Cooper,et al.  Development of the Brain depends on the Visual Environment , 1970, Nature.

[7]  Bradford Z. Mahon,et al.  Action-Related Properties Shape Object Representations in the Ventral Stream , 2007, Neuron.

[8]  Nan Zhang,et al.  A developing sensory mapping for robots , 2002, Proceedings 2nd International Conference on Development and Learning. ICDL 2002.

[9]  A. Newell You can't play 20 questions with nature and win : projective comments on the papers of this symposium , 1973 .

[10]  T. Sejnowski,et al.  Irresistible environment meets immovable neurons , 1997, Behavioral and Brain Sciences.

[11]  Long Ji Lin,et al.  Self-improving reactive agents based on reinforcement learning, planning and teaching , 1992, Machine Learning.

[12]  Paul R. Cohen,et al.  Motion and structure estimation from stereo image sequences , 1992, IEEE Trans. Robotics Autom..

[13]  Risto Miikkulainen,et al.  Computational Maps in the Visual Cortex , 2005 .

[14]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[15]  James S. Albus,et al.  A model of computation and representation in the brain , 2010, Inf. Sci..

[16]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[17]  Risto Miikkulainen,et al.  Self-organization of hierarchical visual maps with feedback connections , 2006, Neurocomputing.

[18]  M. Azim Surani,et al.  Reprogramming of genome function through epigenetic inheritance , 2001, Nature.

[19]  Andreas Burkhalter,et al.  Microcircuitry of forward and feedback connections within rat visual cortex , 1996, The Journal of comparative neurology.

[20]  H. Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part II State of the Art , 2006 .

[21]  Lawrence R. Rabiner,et al.  Toward Vision 2001: Voice and audio processing considerations , 1995, AT&T Technical Journal.

[22]  Y. Dan,et al.  Spike timing-dependent plasticity: from synapse to perception. , 2006, Physiological reviews.

[23]  Juyang Weng,et al.  Where What Network 3 : Developmental Top-Down Attention with Multiple Meaningful Foregrounds , 2010 .

[24]  Juyang Weng,et al.  Image matching using the windowed Fourier phase , 1993, International Journal of Computer Vision.

[25]  J. O'Rourke,et al.  Model-based image analysis of human motion using constraint propagation , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Edward M. Callaway,et al.  Feedforward, feedback and inhibitory connections in primate visual cortex , 2004, Neural Networks.

[27]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[28]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[29]  Mriganka Sur,et al.  PLASTICITY OF ORIENTATION PROCESSING IN ADULT VISUAL CORTEX , 2004 .

[30]  Michael Cohen,et al.  Rapid modeling of animated faces from video images , 2000, ACM Multimedia.

[31]  Linda B. Smith,et al.  Active Information Selection: Visual Attention Through the Hands , 2009, IEEE Transactions on Autonomous Mental Development.

[32]  Juyang Weng,et al.  On developmental mental architectures , 2007, Neurocomputing.

[33]  David Vernon,et al.  Cognitive Vision: the Case for Embodied Perception , 2005 .

[34]  James L. McClelland,et al.  Connectionist models of development , 2003 .

[35]  Xiaoqin Wang,et al.  Remodelling of hand representation in adult cortex determined by timing of tactile stimulation , 1995, Nature.

[36]  M. Cynader,et al.  Somatosensory cortical map changes following digit amputation in adult monkeys , 1984, The Journal of comparative neurology.

[37]  Juyang Weng Brain Model For Developmental Robots : The Spatial Brain for Any Temporal Lengths , 2010 .

[38]  James L. McClelland,et al.  Semantic Cognition: A Parallel Distributed Processing Approach , 2004 .

[39]  Narendra Ahuja,et al.  Learning recognition and segmentation of 3-D objects from 2-D images , 1993, 1993 (4th) International Conference on Computer Vision.

[40]  A. Karmiloff-Smith Précis of Beyond modularity: A developmental perspective on cognitive science , 1994, Behavioral and Brain Sciences.

[41]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[42]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[43]  Frank S. Moyer CRITIQUES AND RESPONSES , 1998 .

[44]  J. Fodor Précis of The Modularity of Mind , 1985, Behavioral and Brain Sciences.

[45]  Stephen Grossberg,et al.  ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network , 1991, [1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering.

[46]  James L. McClelland,et al.  Autonomous Mental Development by Robots and Animals , 2001, Science.

[47]  J. Haldane The interaction of nature and nurture. , 1946, Annals of eugenics.

[48]  Zhuowen Tu,et al.  Image Parsing: Unifying Segmentation, Detection, and Recognition , 2005, International Journal of Computer Vision.

[49]  Charles Kemp,et al.  How to Grow a Mind: Statistics, Structure, and Abstraction , 2011, Science.

[50]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[51]  Narendra Ahuja,et al.  Motion and Structure From Two Perspective Views: Algorithms, Error Analysis, and Error Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[53]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[54]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[55]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[56]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[57]  Yi Lin,et al.  Support Vector Machines and the Bayes Rule in Classification , 2002, Data Mining and Knowledge Discovery.

[58]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[59]  Anthony G. Cohn,et al.  Cognitive Vision: Integrating Symbolic Qualitative Representations with Computer Vision , 2006, Cognitive Vision Systems.

[60]  Christo Panchev,et al.  A hierarchical attention-based neural network architecture, based on human brain guidance, for perception, conceptualisation, action and reasoning , 2009, Image Vis. Comput..

[61]  S. Harnad Categorical Perception: The Groundwork of Cognition , 1990 .

[62]  R. Sun,et al.  The interaction of the explicit and the implicit in skill learning: a dual-process approach. , 2005, Psychological review.

[63]  Allen Newell,et al.  Physical Symbol Systems , 1980, Cogn. Sci..

[64]  Juyang Weng,et al.  Visual Learning with Navigation as an Example , 2000, IEEE Intell. Syst..

[65]  Hugh Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part I The Essential Algorithms , 2006 .

[66]  Brian Scassellati,et al.  IEEE Intelligent Systems , 2018, Computer.

[67]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[68]  Jonathan Stone,et al.  Hierarchical and parallel mechanisms in the organization of visual cortex , 1979, Brain Research Reviews.

[69]  Eric L. W. Grimson,et al.  From Images to Surfaces: A Computational Study of the Human Early Visual System , 1981 .

[70]  H. Kennedy,et al.  Topography of the afferent connectivity of area 17 in the macaque monkey: A double‐labelling study , 1986, The Journal of comparative neurology.

[71]  Pierre-Yves Oudeyer,et al.  Intrinsic Motivation Systems for Autonomous Mental Development , 2007, IEEE Transactions on Evolutionary Computation.

[72]  Juyang Weng,et al.  Where-what network-4: The effect of multiple internal areas , 2010, 2010 IEEE 9th International Conference on Development and Learning.

[73]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[74]  Jeffrey L. Krichmar,et al.  The Neuromodulatory System: A Framework for Survival and Adaptive Behavior in a Challenging World , 2008, Adapt. Behav..

[75]  John R. Anderson,et al.  Rules of the Mind , 1993 .

[76]  S. Grossberg How hallucinations may arise from brain mechanisms of learning, attention, and volition , 2000, Journal of the International Neuropsychological Society.

[77]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[78]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[79]  Marvin Minsky,et al.  Logical Versus Analogical or Symbolic Versus Connectionist or Neat Versus Scruffy , 1991, AI Mag..

[80]  Juyang Weng,et al.  2008 Special issue , 2008 .

[81]  William G. Faris Shadows of the Mind: A Search for the Missing Science of Consciousness , 1997 .

[82]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[83]  S. Grossberg,et al.  View-invariant object category learning, recognition, and search: How spatial and object attention are coordinated using surface-based attentional shrouds , 2009, Cognitive Psychology.

[84]  Helge J. Ritter,et al.  A neural network model for the formation of topographic maps in the CNS: development of receptive fields , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[85]  Gary Cantor,et al.  On the Relationship Between Implicit and Explicit Modes in the Learning of a Complex Rule Structure , 1980 .

[86]  J. Weng,et al.  Optimal In-Place Self-Organization for Cortical Development : Limited Cells , Sparse Coding and Cortical Topography , 2006 .

[87]  A. Allport Attention and control: have we been asking the wrong questions? A critical review of twenty-five years , 1993 .

[88]  Paul J. Werbos,et al.  The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting , 1994 .

[89]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[90]  R. Held,et al.  MOVEMENT-PRODUCED STIMULATION IN THE DEVELOPMENT OF VISUALLY GUIDED BEHAVIOR. , 1963, Journal of comparative and physiological psychology.

[91]  Yuntao Cui,et al.  Transitory Image Sequences, Asymptotic Properties, and Estimation of Motion and Structure , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[92]  Larry S. Davis,et al.  Observing Human-Object Interactions: Using Spatial and Functional Compatibility for Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[94]  Juyang Weng,et al.  Incremental Hierarchical Discriminant Regression , 2007, IEEE Transactions on Neural Networks.

[95]  Feng-Hsiung Hsu,et al.  IBM's Deep Blue Chess grandmaster chips , 1999, IEEE Micro.

[96]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[97]  G. Deco,et al.  A hierarchical neural system with attentional top–down enhancement of the spatial resolution for object recognition , 2000, Vision Research.

[98]  K. Grill-Spector,et al.  Differential development of high-level visual cortex correlates with category-specific recognition memory , 2007, Nature Neuroscience.

[99]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[100]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[101]  E. Callaway,et al.  Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Juyang Weng,et al.  Spatio–Temporal Multimodal Developmental Learning , 2010, IEEE Transactions on Autonomous Mental Development.

[103]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[104]  SRIDHAR MAHADEVAN,et al.  Average Reward Reinforcement Learning: Foundations, Algorithms, and Empirical Results , 2005, Machine Learning.

[105]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[106]  Narendra Ahuja,et al.  Cresceptron: a self-organizing neural network which grows adaptively , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[107]  Jacques Balthazart,et al.  Is brain estradiol a hormone or a neurotransmitter? , 2006, Trends in Neurosciences.

[108]  M. Domjan The principles of learning and behavior, 4th ed. , 1998 .

[109]  M. Domjan The principles of learning and behavior , 1982 .

[110]  Tom Ziemke,et al.  Enactive artificial intelligence: Investigating the systemic organization of life and mind , 2009, Artif. Intell..

[111]  Juyang Weng,et al.  Neuromorphic motivated systems , 2011, The 2011 International Joint Conference on Neural Networks.

[112]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[113]  James L. McClelland,et al.  Précis of Semantic Cognition: A Parallel Distributed Processing Approach , 2008, Behavioral and Brain Sciences.

[114]  Geoffrey E. Hinton Learning multiple layers of representation , 2007, Trends in Cognitive Sciences.

[115]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[116]  Juyang Weng,et al.  Task Transfer by a Developmental Robot , 2007, IEEE Transactions on Evolutionary Computation.

[117]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[118]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[119]  Sridhar Mahadevan,et al.  Approximate planning with hierarchical partially observable Markov decision process models for robot navigation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[120]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[121]  Olaf Sporns,et al.  Plasticity in Value Systems and its Role in Adaptive Behavior , 2000, Adapt. Behav..

[122]  Juyang Weng,et al.  Auditory learning: a developmental method , 2005, IEEE Transactions on Neural Networks.

[123]  Pieter R. Roelfsema,et al.  Attention-Gated Reinforcement Learning of Internal Representations for Classification , 2005, Neural Computation.

[124]  Pat Langley,et al.  Hierarchical Skills and Cognitive Architectures , 2004 .

[125]  S. Grossberg,et al.  Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex , 2000, Vision Research.

[126]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[127]  T. Wiesel,et al.  Receptive field dynamics in adult primary visual cortex , 1992, Nature.

[128]  W. K. Purves Life: The Science of Biology , 1985 .

[129]  Frank K. Soong,et al.  High performance connected digit recognition using hidden Markov models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[130]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[131]  Juyang Weng,et al.  Where-what network 1: “Where” and “what” assist each other through top-down connections , 2008, 2008 7th IEEE International Conference on Development and Learning.

[132]  E. Li Chromatin modification and epigenetic reprogramming in mammalian development , 2002, Nature Reviews Genetics.

[133]  D. Baylor,et al.  Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. , 1991, Science.

[134]  Anton Schwartz,et al.  A Reinforcement Learning Method for Maximizing Undiscounted Rewards , 1993, ICML.

[135]  John H. L. Hansen,et al.  Discrete-Time Processing of Speech Signals , 1993 .

[136]  Alexander I. Rudnicky,et al.  Survey of current speech technology , 1994, CACM.

[137]  Roger Penrose,et al.  Précis of The Emperor's New Mind: Concerning computers, minds, and the laws of physics , 1990, Behavioral and Brain Sciences.

[138]  Juyang Weng,et al.  Hierarchical Discriminant Regression , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[139]  Juyang Weng,et al.  Top–Down Connections in Self-Organizing Hebbian Networks: Topographic Class Grouping , 2010, IEEE Transactions on Autonomous Mental Development.

[140]  Milton A. Rothman The Laws of Physics , 1963 .

[141]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[142]  Nuttapong Chentanez,et al.  Intrinsically Motivated Learning of Hierarchical Collections of Skills , 2004 .

[143]  Takeo Kanade,et al.  A Cooperative Algorithm for Stereo Matching and Occlusion Detection , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[144]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[145]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[146]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[147]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[148]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[149]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[150]  Juyang Weng,et al.  Optimal In-Place Learning and the Lobe Component Analysis , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[151]  J. Elman Learning and development in neural networks: the importance of starting small , 1993, Cognition.

[152]  Roberto Cipolla,et al.  Robust structure from motion using motion parallax , 1993, 1993 (4th) International Conference on Computer Vision.

[153]  L. Wolpert Developmental Biology , 1968, Nature.

[154]  Leila Reddy,et al.  Top–down biases win against focal attention in the fusiform face area , 2007, NeuroImage.

[155]  Ida J. Stockman Movement and Action in Learning and Development: Clinical Implications for Pervasive Developmental Disorders , 2004 .

[156]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[157]  Robert A. Lordo,et al.  Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.

[158]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[159]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[160]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[161]  Thomas S. Huang,et al.  Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[162]  Peter Norvig,et al.  Artificial intelligence - a modern approach, 2nd Edition , 2003, Prentice Hall series in artificial intelligence.

[163]  J. Daugman Two-dimensional spectral analysis of cortical receptive field profiles , 1980, Vision Research.

[164]  G. Edelman,et al.  Behavioral constraints in the development of neuronal properties: a cortical model embedded in a real-world device. , 1998, Cerebral cortex.

[165]  Juyang Weng,et al.  A 5-chunk developmental brain-mind network model for multiple events in complex backgrounds , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[166]  Giulio Sandini,et al.  A Survey of Artificial Cognitive Systems: Implications for the Autonomous Development of Mental Capabilities in Computational Agents , 2007, IEEE Transactions on Evolutionary Computation.

[167]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[168]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[169]  Pat Langley,et al.  Cognitive architectures: Research issues and challenges , 2009, Cognitive Systems Research.

[170]  Fei-Fei Li,et al.  What, where and who? Classifying events by scene and object recognition , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[171]  L C Katz,et al.  Development of local circuits in mammalian visual cortex. , 1992, Annual review of neuroscience.

[172]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[173]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[174]  Michael Hucka,et al.  Robo-Soar: An integration of external interaction, planning, and learning using Soar , 1991, Robotics Auton. Syst..

[175]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[176]  Dileep George,et al.  Towards a Mathematical Theory of Cortical Micro-circuits , 2009, PLoS Comput. Biol..

[177]  D. J. Felleman,et al.  Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys , 1983, Neuroscience.

[178]  Barney A Schlinger,et al.  Brain estrogens rapidly strengthen auditory encoding and guide song preference in a songbird , 2010, Proceedings of the National Academy of Sciences.

[179]  Juyang Weng,et al.  Inherent Value Systems for Autonomous Mental Development , 2007, Int. J. Humanoid Robotics.

[180]  Junji Yamato,et al.  Recognizing human action in time-sequential images using hidden Markov model , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[181]  J. Elman,et al.  Rethinking Innateness: A Connectionist Perspective on Development , 1996 .

[182]  Ron Sun,et al.  From implicit skills to explicit knowledge: a bottom-up model of skill learning , 2001, Cogn. Sci..

[183]  Holk Cruse,et al.  Neural networks as cybernetic systems , 1996 .

[184]  R. Jaenisch,et al.  Nuclear Cloning and Epigenetic Reprogramming of the Genome , 2001, Science.

[185]  Juyang Weng,et al.  WWN-text: Cortex-like language acquisition with “what” and “where” , 2010, 2010 IEEE 9th International Conference on Development and Learning.

[186]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[187]  John E. Laird,et al.  Extending Cognitive Architecture with Episodic Memory , 2007, AAAI.

[188]  W. Reik,et al.  Epigenetic Reprogramming in Mammalian Development , 2001, Science.

[189]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[190]  W. Lovejoy A survey of algorithmic methods for partially observed Markov decision processes , 1991 .

[191]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[192]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[193]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[194]  Takeo Kanade,et al.  Automatic generation of object recognition programs , 1988, Proc. IEEE.

[195]  T. Shultz Computational Developmental Psychology , 2003 .

[196]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[197]  Alex Pentland,et al.  Space-time gestures , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[198]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[199]  Narendra Ahuja,et al.  Learning Recognition and Segmentation Using the Cresceptron , 1997, International Journal of Computer Vision.

[200]  Jeffrey L. Krichmar,et al.  Brain-Based Devices for the Study of Nervous Systems and the Development of Intelligent Machines , 2005, Artificial Life.

[201]  Juyang Weng,et al.  In-Place Learning for Positional and Scale Invariance , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[202]  Michael Cole,et al.  THE DEVELOPMENT OF CHILDREN. , 1925, Science.

[203]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[204]  Aaron F. Bobick,et al.  A state-based technique for the summarization and recognition of gesture , 1995, Proceedings of IEEE International Conference on Computer Vision.

[205]  Brian Scassellati,et al.  Infant-like Social Interactions between a Robot and a Human Caregiver , 2000, Adapt. Behav..

[206]  Alex Pentland,et al.  Active gesture recognition using partially observable Markov decision processes , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[207]  Juyang Weng,et al.  Complex text processing by the temporal context machines , 2009, 2009 IEEE 8th International Conference on Development and Learning.

[208]  E. Miller,et al.  Response to Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[209]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[210]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[211]  Susan Oyama The Ontogeny of Information: Developmental Systems and Evolution , 2000 .

[212]  Ron Sun,et al.  The importance of cognitive architectures: an analysis based on CLARION , 2007, J. Exp. Theor. Artif. Intell..

[213]  U. Rieder,et al.  Markov Decision Processes , 2010 .

[214]  Alex Pentland,et al.  Learning words from sights and sounds: a computational model , 2002, Cogn. Sci..

[215]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[216]  J. Arand,et al.  Epigenetic Reprogramming in Mammalian Development , 2012 .

[217]  L. Barsalou Grounded cognition. , 2008, Annual review of psychology.

[218]  Jan C. Wiemer,et al.  The Time-Organized Map Algorithm: Extending the Self-Organizing Map to Spatiotemporal Signals , 2003, Neural Computation.

[219]  Dana H. Ballard,et al.  Principles of animate vision , 1992, CVGIP Image Underst..

[220]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[221]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[222]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[223]  Peter Dayan,et al.  Technical Note: Q-Learning , 2004, Machine Learning.

[224]  K. Doya Complementary roles of basal ganglia and cerebellum in learning and motor control , 2000, Current Opinion in Neurobiology.

[225]  John R Anderson,et al.  An integrated theory of the mind. , 2004, Psychological review.

[226]  C. Lee Giles,et al.  Constructing deterministic finite-state automata in recurrent neural networks , 1996, JACM.

[227]  R. Bellman Dynamic programming. , 1957, Science.

[228]  Florentin Wörgötter,et al.  Cognitive agents - a procedural perspective relying on the predictability of Object-Action-Complexes (OACs) , 2009, Robotics Auton. Syst..

[229]  Juyang Weng,et al.  Modeling dopamine and serotonin systems in a visual recognition network , 2011, The 2011 International Joint Conference on Neural Networks.

[230]  Zicheng Liu,et al.  Rapid modeling of animated faces from video , 2001, Comput. Animat. Virtual Worlds.

[231]  Z. Pylyshyn Computation and cognition: issues in the foundations of cognitive science , 1980, Behavioral and Brain Sciences.

[232]  Masaki Ogino,et al.  Cognitive Developmental Robotics: A Survey , 2009, IEEE Transactions on Autonomous Mental Development.

[233]  W. Singer,et al.  Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. , 1992, Science.

[234]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[235]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[236]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[237]  Brendan McCane,et al.  On Benchmarking Optical Flow , 2001, Comput. Vis. Image Underst..

[238]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[239]  Anil K. Jain,et al.  Evidence-Based Recognition of 3-D Objects , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[240]  M. Sur,et al.  Patterning and Plasticity of the Cerebral Cortex , 2005, Science.

[241]  M. Sur,et al.  Development and plasticity of cortical areas and networks , 2001, Nature Reviews Neuroscience.

[242]  Juyang Weng,et al.  Task Muddiness, Intelligence Metrics, and the Necessity of Autonomous Mental Development , 2009, Minds and Machines.

[243]  W. Grimson,et al.  Model-Based Recognition and Localization from Sparse Range or Tactile Data , 1984 .

[244]  Robin I. M. Dunbar The Ontogeny of Information: Developmental Systems and Evolution, Susan Oyama. Cambridge University Press (1985), ix, +206. Price £8·95 (paperback) , 1987 .

[245]  F. Werblin,et al.  Requirement for Cholinergic Synaptic Transmission in the Propagation of Spontaneous Retinal Waves , 1996, Science.

[246]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[247]  Anders Orebäck,et al.  Evaluation of Architectures for Mobile Robotics , 2003, Auton. Robots.

[248]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[249]  Juyang Weng,et al.  From neural networks to the brain: autonomous mental development , 2006, IEEE Computational Intelligence Magazine.

[250]  Juyang Weng,et al.  Synapse maintenance in the Where-What Networks , 2011, The 2011 International Joint Conference on Neural Networks.

[251]  Alessandra Angelucci,et al.  Induction of visual orientation modules in auditory cortex , 2000, Nature.

[252]  Alex Pentland,et al.  Recovery of Nonrigid Motion and Structure , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[253]  Sridhar Mahadevan,et al.  Average reward reinforcement learning: Foundations, algorithms, and empirical results , 2004, Machine Learning.

[254]  Juyang Weng,et al.  WWN-2: A biologically inspired neural network for concurrent visual attention and recognition , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[255]  Juyang Weng,et al.  A Multilayer in-Place Learning Network for Development of General Invariances , 2007, Int. J. Humanoid Robotics.

[256]  Allen Newell,et al.  Production Systems: Models of Control Structures , 1973 .

[257]  Gerhard Krieger,et al.  Scene analysis with saccadic eye movements: Top-down and bottom-up modeling , 2001, J. Electronic Imaging.

[258]  C. P. Dolan,et al.  Neuro-Soar: a neural-network architecture for goal-oriented behavior , 1993 .

[259]  Fei-Fei Li,et al.  Modeling mutual context of object and human pose in human-object interaction activities , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[260]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[261]  George A. Miller,et al.  CYC, WordNet, and EDR: critiques and responses , 1995, CACM.

[262]  Juyang Weng,et al.  Autonomous Mental Development: Workshop on Development and Learning (WDL) , 2002, AI Mag..