A hybrid approach combining an improved genetic algorithm and optimization strategies for the asymmetric traveling salesman problem

The asymmetric traveling salesman problem (ATSP) appears in various applications. Although there are several heuristic approaches to its solution, the problem is still a difficult combinatorial optimization problem. This work proposes a novel hybrid approach specialized for the ATSP. The proposed method incorporates an improved genetic algorithm (IGA) and some optimization strategies that contribute to its effectiveness. In the IGA, both the crossover operation and the mutation operation are improved by selecting the optimum from a set of solutions. Three strategies: immigration, local optimization and global optimization are established based on several empirical optimization strategies to improve the evolution of the IGA. Computational experiments are conducted on 16 ATSP instances available in the TSPLIB (traveling salesman problem library). The comparative study shows that our proposed approach outperforms several other published algorithms.

[1]  Dong Guo Shao,et al.  A novel evolution strategy for multiobjective optimization problem , 2005 .

[2]  Weixiong Zhang,et al.  A note on the complexity of the asymmetric traveling salesman problem , 1997, Oper. Res. Lett..

[3]  Loo Hay Lee,et al.  Artificial intelligence heuristics in solving vehicle routing problems with time window constraints , 2001 .

[4]  Matteo Fischetti,et al.  A Polyhedral Approach to the Asymmetric Traveling Salesman Problem , 1997 .

[5]  Amitava Dutta,et al.  Integrating Heuristic Knowledge and Optimization Models for Communications Network Design , 1993, IEEE Trans. Knowl. Data Eng..

[6]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[7]  Shigenobu Kobayashi,et al.  Edge Assembly Crossover: A High-Power Genetic Algorithm for the Travelling Salesman Problem , 1997, ICGA.

[8]  Alan M. Frieze,et al.  On the worst-case performance of some algorithms for the asymmetric traveling salesman problem , 1982, Networks.

[9]  C. Waddington Canalization of Development and the Inheritance of Acquired Characters , 1942, Nature.

[10]  Hideo Tanaka,et al.  Genetic algorithms for flowshop scheduling problems , 1996 .

[11]  Mitsuo Gen,et al.  Genetic algorithms and engineering optimization , 1999 .

[12]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[13]  Raghunathan Rengaswamy,et al.  A framework for integrating diagnostic knowledge with nonlinear optimization for data reconciliation and parameter estimation in dynamic systems , 2001 .

[14]  Weixiong Zhang,et al.  The Asymmetric Traveling Salesman Problem: Algorithms, Instance Generators, and Tests , 2001, ALENEX.

[15]  Jean-Yves Potvin,et al.  Genetic Algorithms for the Traveling Salesman Problem , 2005 .

[16]  Richard K. Belew,et al.  When Both Individuals and Populations Search: Adding Simple Learning to the Genetic Algorithm , 1989, ICGA.

[17]  Weixiong Zhang,et al.  Cut-and-solve: An iterative search strategy for combinatorial optimization problems , 2006, Artif. Intell..

[18]  F. Fred Choobineh,et al.  A multi-objective tabu search for a single-machine scheduling problem with sequence-dependent setup times , 2006, Eur. J. Oper. Res..

[19]  David H. Ackley,et al.  Interactions between learning and evolution , 1991 .

[20]  Ling Wang,et al.  An effective hybrid optimization strategy for job-shop scheduling problems , 2001, Comput. Oper. Res..

[21]  Inman Harvey The Puzzle of the Persistent Question Marks : A Case Study of Genetic Drift , 1993, ICGA.

[22]  J. Baldwin A New Factor in Evolution , 1896, The American Naturalist.

[23]  Andrew Kusiak Process planning: a knowledge-based and optimization perspective , 1991, IEEE Trans. Robotics Autom..

[24]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[25]  Jeffrey A. Joines,et al.  A hybrid genetic algorithm for manufacturing cell design , 2000 .

[26]  J. Pekny,et al.  Results from a parallel branch and bound algorithm for the asymmetric traveling salesman problem , 1989 .

[27]  Lawrence J. Schmitt,et al.  Performance characteristics of alternative genetic algorithmic approaches to the traveling salesman problem using path representation: An empirical study , 1998, Eur. J. Oper. Res..

[28]  Bernd Freisleben,et al.  A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[29]  Ling Wang,et al.  A hybrid genetic algorithm-neural network strategy for simulation optimization , 2005, Appl. Math. Comput..

[30]  L. Darrell Whitley,et al.  Lamarckian Evolution, The Baldwin Effect and Function Optimization , 1994, PPSN.

[31]  P. Toth,et al.  Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem , 1980 .

[32]  Lance D. Chambers,et al.  Practical Handbook of Genetic Algorithms , 1995 .

[33]  Richard M. Karp,et al.  A Patching Algorithm for the Nonsymmetric Traveling-Salesman Problem , 1979, SIAM J. Comput..

[34]  Matteo Fischetti,et al.  An Additive Bounding Procedure for Combinatorial Optimization Problems , 1989, Oper. Res..

[35]  Luís Gouveia,et al.  The asymmetric travelling salesman problem and a reformulation of the Miller-Tucker-Zemlin constraints , 1999, Eur. J. Oper. Res..

[36]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[37]  Pablo Moscato,et al.  A New Memetic Algorithm for the Asymmetric Traveling Salesman Problem , 2004, J. Heuristics.

[38]  Tim Walters,et al.  Repair and Brood Selection in the Traveling Salesman Problem , 1998, PPSN.

[39]  Ida G. Sprinkhuizen-Kuyper,et al.  Evolving Artificial Neural Networks using the "Baldwin Effect" † , 1995 .

[40]  Ángel Corberán,et al.  A GRASP heuristic for the mixed Chinese postman problem , 2002, Eur. J. Oper. Res..

[41]  Robert G. Reynolds,et al.  Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[42]  Claude-Nicolas Fiechter,et al.  A Parallel Tabu Search Algorithm for Large Traveling Salesman Problems , 1994, Discret. Appl. Math..

[43]  M. Gorges-Schleuter Asparagos96 and the traveling salesman problem , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[44]  Donald L. Miller,et al.  Exact Solution of Large Asymmetric Traveling Salesman Problems , 1991, Science.

[45]  Giovanni Righini,et al.  A worst-case analysis of two approximate algorithms for the asymmetric travelling salesman problem , 1995 .

[46]  Charles E. Taylor,et al.  Artificial Life II , 1991 .

[47]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[48]  Matteo Fischetti,et al.  An additive bounding procedure for the asymmetric travelling salesman problem , 1992, Math. Program..

[49]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[50]  Jens Lysgaard Cluster based branching for the asymmetric traveling salesman problem , 1999, Eur. J. Oper. Res..

[51]  P. W. Poon,et al.  Genetic algorithm crossover operators for ordering applications , 1995, Comput. Oper. Res..

[52]  John E. Beasley,et al.  A genetic algorithm for the generalised assignment problem , 1997, Comput. Oper. Res..

[53]  Mateo Valero,et al.  Parallel computing and transputer applications , 1992 .

[54]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[55]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[56]  Brian J. Ross,et al.  A Lamarckian Evolution Strategy for Genetic Algorithms , 1998, Practical Handbook of Genetic Algorithms.

[57]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[58]  Jean-Yves Potvin,et al.  THE TRAVELING SALESMAN PROBLEM: A NEURAL NETWORK PERSPECTIVE , 1993 .

[59]  Stephen P. Boyd,et al.  Branch and Bound Methods , 1987 .

[60]  In-Chan Choi,et al.  A genetic algorithm with a mixed region search for the asymmetric traveling salesman problem , 2003, Comput. Oper. Res..

[61]  J. A. Spim,et al.  Mathematical modeling and optimization strategies (genetic algorithm and knowledge base) applied to the continuous casting of steel , 2003 .

[62]  Jean-Michel Renders,et al.  Hybrid methods using genetic algorithms for global optimization , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[63]  B. Freisleben,et al.  Genetic local search for the TSP: new results , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[64]  Hsiao-Fan Wang,et al.  Hybrid genetic algorithm for optimization problems with permutation property , 2004, Comput. Oper. Res..

[65]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[66]  Giovanni Righini,et al.  A note on the approximation of the asymmetric traveling salesman problem , 2004, Eur. J. Oper. Res..