Efficient Device-Independent Quantum Key Distribution

An efficient protocol for quantum key distribution is proposed the security of which is entirely device-independent and not even based on the accuracy of quantum physics. A scheme of that type relies on the quantum-physical phenomenon of non-local correlations and on the assumption that no illegitimate information flows within and between Alice’s and Bob’s laboratories. The latter can be enforced via the non-signaling postulate of relativity if all measurements are carried out simultaneously enough.

[1]  Andrew Chi-Chih Yao,et al.  Quantum cryptography with imperfect apparatus , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[2]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[3]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[4]  Esther Hanggi,et al.  Quantum Cryptography Based Solely on Bell's Theorem , 2009 .

[5]  Ueli Maurer Conditionally-perfect secrecy and a provably-secure randomized cipher , 2004, Journal of Cryptology.

[6]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[7]  Ueli Maurer,et al.  The Bare Bounded-Storage Model: The Tight Bound on the Storage Requirement for Key Agreement , 2008, IEEE Transactions on Information Theory.

[8]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[9]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[10]  M. Mckague,et al.  Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices , 2009, 0908.0503.

[11]  Ueli Maurer,et al.  On the power of quantum memory , 2005, IEEE Transactions on Information Theory.

[12]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[13]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[14]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[15]  Ueli Maurer,et al.  Indistinguishability of Random Systems , 2002, EUROCRYPT.

[16]  Reinder Nijho,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 2005 .

[17]  Barbara M. Terhal Is entanglement monogamous? , 2004, IBM J. Res. Dev..

[18]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[19]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[20]  Ueli Maurer,et al.  A Provably-Secure Strongly-Randomized Cipher , 1991, EUROCRYPT.

[21]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[22]  Lluis Masanes,et al.  Universally-composable privacy amplification from causality constraints , 2008, Physical review letters.

[23]  Andreas Winter,et al.  Security of key distribution from causality constraints , 2006 .

[24]  Birgit Pfitzmann,et al.  A model for asynchronous reactive systems and its application to secure message transmission , 2001, Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001.

[25]  V. Makarov Controlling passively quenched single photon detectors by bright light , 2007, 0707.3987.

[26]  Robert König,et al.  Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.

[27]  N. Gisin,et al.  Trojan-horse attacks on quantum-key-distribution systems (6 pages) , 2005, quant-ph/0507063.

[28]  Aggelos Kiayias,et al.  Traitor Tracing with Constant Transmission Rate , 2002, EUROCRYPT.

[29]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[30]  Hoi-Kwong Lo,et al.  Phase-Remapping Attack in Practical Quantum Key Distribution Systems , 2006, ArXiv.

[31]  R. Renner,et al.  A de Finetti representation for finite symmetric quantum states , 2004, quant-ph/0410229.

[32]  Ivan Bjerre Damgård,et al.  Advances in Cryptology — EUROCRYPT ’90 , 2001, Lecture Notes in Computer Science.

[33]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[34]  V. Scarani,et al.  Secrecy extraction from no-signaling correlations , 2006, quant-ph/0606197.

[35]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[36]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[37]  Larry Carter,et al.  Universal classes of hash functions (Extended Abstract) , 1977, STOC '77.

[38]  S. Massar,et al.  Efficient quantum key distribution secure against no-signalling eavesdroppers , 2006, quant-ph/0605246.

[39]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[40]  Tor Helleseth,et al.  Advances in Cryptology — EUROCRYPT ’93 , 2001, Lecture Notes in Computer Science.

[41]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[42]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[43]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[44]  Leonid A. Levin,et al.  Pseudo-random generation from one-way functions , 1989, STOC '89.

[45]  Birgit Pfitzmann,et al.  A composable cryptographic library with nested operations , 2003, CCS '03.