Impact of Landmark Parametrization on Monocular EKF-SLAM with Points and Lines

This paper explores the impact that landmark parametrization has in the performance of monocular, EKF-based, 6-DOF simultaneous localization and mapping (SLAM) in the context of undelayed landmark initialization.Undelayed initialization in monocular SLAM challenges EKF because of the combination of non-linearity with the large uncertainty associated with the unmeasured degrees of freedom. In the EKF context, the goal of a good landmark parametrization is to improve the model’s linearity as much as possible, improving the filter consistency, achieving robuster and more accurate localization and mapping.This work compares the performances of eight different landmark parametrizations: three for points and five for straight lines. It highlights and justifies the keys for satisfactory operation: the use of parameters behaving proportionally to inverse-distance, and landmark anchoring. A unified EKF-SLAM framework is formulated as a benchmark for points and lines that is independent of the parametrization used. The paper also defines a generalized linearity index suited for the EKF, and uses it to compute and compare the degrees of linearity of each parametrization. Finally, all eight parametrizations are benchmarked employing analytical tools (the linearity index) and statistical tools (based on Monte Carlo error and consistency analyses), with simulations and real imagery data, using the standard and the robocentric EKF-SLAM formulations.

[1]  Javier Civera,et al.  Unified Inverse Depth Parametrization for Monocular SLAM , 2006, Robotics: Science and Systems.

[2]  Eduardo Mario Nebot,et al.  Consistency of the EKF-SLAM Algorithm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Lina María Paz,et al.  Large-Scale 6-DOF SLAM With Stereo-in-Hand , 2008, IEEE Transactions on Robotics.

[4]  Walterio W. Mayol-Cuevas,et al.  Discovering Higher Level Structure in Visual SLAM , 2008, IEEE Transactions on Robotics.

[5]  Tom Drummond,et al.  Scalable Monocular SLAM , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Matteo Matteucci,et al.  Monocular SLAM with Inverse Scaling Parametrization , 2008, BMVC.

[7]  Cyrille Berger,et al.  DSeg : Détection directe de segments dans une image , 2010 .

[8]  W. Burgard,et al.  RAWSEEDS: Robotics Advancement through Web-publishing of Sensorial and Elaborated Extensive Data Sets , 2010 .

[9]  Javier Civera,et al.  1-point RANSAC for EKF-based Structure from Motion , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Anders Heyden,et al.  On-Line Structure and Motion Estimation Based on a Novel Parameterized Extended Kalman Filter , 2010, 2010 20th International Conference on Pattern Recognition.

[11]  Hendrik Van Brussel,et al.  A Smoothly Constrained Kalman Filter , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[13]  Simon Lacroix,et al.  Monocular-vision based SLAM using Line Segments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[14]  David W. Murray,et al.  A Square Root Unscented Kalman Filter for visual monoSLAM , 2008, 2008 IEEE International Conference on Robotics and Automation.

[15]  J. S. Ortega Towards visual localization, mapping and moving objects tracking by a mobile robot : a geometric and probabilistic approach , 2007 .

[16]  A. Einstein The Foundation of the General Theory of Relativity , 1916 .

[17]  Tom Chen,et al.  Design and implementation , 2006, IEEE Commun. Mag..

[18]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[19]  Michel Devy,et al.  Undelayed initialization in bearing only SLAM , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Joan Solà,et al.  Consistency of the monocular EKF-SLAM algorithm for three different landmark parametrizations , 2010, 2010 IEEE International Conference on Robotics and Automation.

[21]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Hauke Strasdat,et al.  Real-time monocular SLAM: Why filter? , 2010, 2010 IEEE International Conference on Robotics and Automation.

[23]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[24]  Patrick Rives,et al.  Accurate Quadrifocal Tracking for Robust 3D Visual Odometry , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[25]  Salah Sukkarieh,et al.  Inertial Aiding of Inverse Depth SLAM using a Monocular Camera , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[26]  Gamini Dissanayake,et al.  An efficient multiple hypothesis filter for bearing-only SLAM , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[27]  Adrien Bartoli,et al.  The 3D Line Motion Matrix and Alignment of Line Reconstructions , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[28]  David W. Murray,et al.  Improving the Agility of Keyframe-Based SLAM , 2008, ECCV.

[29]  Walterio W. Mayol-Cuevas,et al.  Real-Time Model-Based SLAM Using Line Segments , 2006, ISVC.

[30]  Ian D. Reid,et al.  Real-Time Monocular SLAM with Straight Lines , 2006, BMVC.

[31]  Kurt Konolige,et al.  FrameSLAM: From Bundle Adjustment to Real-Time Visual Mapping , 2008, IEEE Transactions on Robotics.

[32]  Teresa A. Vidal-Calleja,et al.  Undelayed initialization of line segments in monocular SLAM , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Tim Bailey Constrained initialisation for bearing-only SLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[34]  Simon Lacroix,et al.  A practical 3D bearing-only SLAM algorithm , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  David Nister,et al.  Bundle Adjustment Rules , 2006 .

[36]  Adrien Bartoli,et al.  The 3D Line Motion Matrix and Alignment of Line Reconstructions , 2004, International Journal of Computer Vision.

[37]  Gamini Dissanayake,et al.  Bearing-only SLAM in Indoor Environments Using a Modified Particle Filter , 2003 .

[38]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[39]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[40]  P. Protzel,et al.  Using the Unscented Kalman Filter in Mono-SLAM with Inverse Depth Parametrization for Autonomous Airship Control , 2007, 2007 IEEE International Workshop on Safety, Security and Rescue Robotics.

[41]  Wolfram Burgard,et al.  Robotics: Science and Systems XV , 2010 .

[42]  Richard Szeliski,et al.  Vision Algorithms: Theory and Practice , 2002, Lecture Notes in Computer Science.

[43]  Wolfram Burgard,et al.  A comparison of SLAM algorithms based on a graph of relations , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[44]  Stefano Soatto,et al.  Structure from Motion Causally Integrated Over Time , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  José A. Castellanos,et al.  Robocentric map joining: Improving the consistency of EKF-SLAM , 2007, Robotics Auton. Syst..

[46]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[47]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[48]  Teresa A. Vidal-Calleja,et al.  Fusing Monocular Information in Multicamera SLAM , 2008, IEEE Transactions on Robotics.

[49]  Stergios I. Roumeliotis,et al.  Analysis and improvement of the consistency of extended Kalman filter based SLAM , 2008, 2008 IEEE International Conference on Robotics and Automation.

[50]  Sanjeev R. Kulkarni,et al.  Convergence and Consistency of , 2006 .

[51]  J. A. Castellanos,et al.  Limits to the consistency of EKF-based SLAM , 2004 .

[52]  Tom Drummond,et al.  Monocular SLAM as a Graph of Coalesced Observations , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[53]  Javier Civera Sancho,et al.  Real-time ekf-based structure from motion , 2009 .

[54]  Giulio Fontana,et al.  Rawseeds ground truth collection systems for indoor self-localization and mapping , 2009, Auton. Robots.

[55]  João Pedro Barreto,et al.  A unifying geometric representation for central projection systems , 2006, Comput. Vis. Image Underst..

[56]  V. Aidala,et al.  Utilization of modified polar coordinates for bearings-only tracking , 1983 .

[57]  Tom Drummond,et al.  Edge landmarks in monocular SLAM , 2009, Image Vis. Comput..

[58]  Gamini Dissanayake,et al.  Convergence and Consistency Analysis for Extended Kalman Filter Based SLAM , 2007, IEEE Transactions on Robotics.