Compact Representation for Dynamic Texture Video Coding Using Tensor Method

Dynamic textures are important parts of natural video signals that usually generate an enormous size of high-dimensional data; therefore, effective representation methods are needed for relevant applications. This paper presents a new method for compact representation of high-dimensional data based on tensor decomposition, which can preserve the native form of the data. By treating the high-dimensional data as higher-order tensors, we propose a multiple tensor rank-R decomposition (MTRD) algorithm, which uses low-rank tensors to iteratively approximate the original tensor. Through our MTRD algorithm, the dimension of the data can be greatly reduced, and the decomposition coefficients give a compact representation of the data. As our compact representation method can characterize regular textures in video well, we apply it to dynamic texture video coding, and achieve a better video quality than H.264/AVC with a very low bit-rate just by simply quantizing and coding the decomposition coefficients. Experimental results show that the peak signal-to-noise ratio values of the reconstructed testing sequences can be improved from approximately 0.28 dB up to 8.96 dB, while their bit-rate reductions range from approximately 1.34% to 64.92%.

[1]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[2]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[3]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[4]  J. Chisholm Approximation by Sequences of Padé Approximants in Regions of Meromorphy , 1966 .

[5]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[6]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[7]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[8]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[9]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[10]  Takio Kurita,et al.  A method of block truncation coding for color image compression , 1993, IEEE Trans. Commun..

[11]  L. Lathauwer,et al.  Signal Processing based on Multilinear Algebra , 1997 .

[12]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[13]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[14]  Katsushi Ikeuchi,et al.  Appearance Based Object Modeling using Texture Database: Acquisition Compression and Rendering , 2002, Rendering Techniques.

[15]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[16]  Gary J. Sullivan,et al.  Rate-constrained coder control and comparison of video coding standards , 2003, IEEE Trans. Circuits Syst. Video Technol..

[17]  N. Ahuja,et al.  Compact representation of multidimensional data using tensor rank-one decomposition , 2004, ICPR 2004.

[18]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[19]  Andrew Chi-Sing Leung,et al.  Compressing the illumination-adjustable images with principal component analysis , 2005, IEEE Trans. Circuits Syst. Video Technol..

[20]  Dmitry Chetverikov,et al.  A Brief Survey of Dynamic Texture Description and Recognition , 2005, CORES.

[21]  Silvia Bacchelli,et al.  Image denoising using principal component analysis in the wavelet domain , 2006 .

[22]  Narendra Ahuja,et al.  A Tensor Approximation Approach to Dimensionality Reduction , 2008, International Journal of Computer Vision.

[23]  Berkant Savas,et al.  Handwritten digit classification using higher order singular value decomposition , 2007, Pattern Recognit..

[24]  Demetri Terzopoulos,et al.  Multilinear (Tensor) Image Synthesis, Analysis, and Recognition , 2007 .

[25]  M. Alex O. Vasilescu,et al.  Multilinear (Tensor) Image Synthesis, Analysis, and Recognition [Exploratory DSP] , 2007, IEEE Signal Processing Magazine.

[26]  Qian Du,et al.  Hyperspectral Image Compression Using JPEG2000 and Principal Component Analysis , 2007, IEEE Geoscience and Remote Sensing Letters.

[27]  Rahul Vanam,et al.  Improved Rate Control and Motion Estimation for H.264 Encoder , 2007, 2007 IEEE International Conference on Image Processing.

[28]  Manuel Menezes de Oliveira Neto,et al.  Real-time line detection through an improved Hough transform voting scheme , 2008, Pattern Recognit..

[29]  Sabine Süsstrunk,et al.  Higher Order SVD Analysis for Dynamic Texture Synthesis , 2008, IEEE Transactions on Image Processing.

[30]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[31]  Caroline Fossati,et al.  Improvement of Classification for Hyperspectral Images Based on Tensor Modeling , 2010, IEEE Geoscience and Remote Sensing Letters.

[32]  Mark J. Huiskes,et al.  DynTex: A comprehensive database of dynamic textures , 2010, Pattern Recognit. Lett..

[33]  Fan Zhang,et al.  Video dimension reduction and coding using Multiple Tensor Rank-R Decomposition , 2011, 2011 4th International Congress on Image and Signal Processing.

[34]  Mehran Yazdi,et al.  Noise Reduction of Hyperspectral Images Using Kernel Non-Negative Tucker Decomposition , 2011, IEEE Journal of Selected Topics in Signal Processing.

[35]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.