The Microcircuit Concept Applied to Cortical Evolution: from Three-Layer to Six-Layer Cortex

Understanding the principles of organization of the cerebral cortex requires insight into its evolutionary history. This has traditionally been the province of anatomists, but evidence regarding the microcircuit organization of different cortical areas is providing new approaches to this problem. Here we use the microcircuit concept to focus first on the principles of microcircuit organization of three-layer cortex in the olfactory cortex, hippocampus, and turtle general cortex, and compare it with six-layer neocortex. From this perspective it is possible to identify basic circuit elements for recurrent excitation and lateral inhibition that are common across all the cortical regions. Special properties of the apical dendrites of pyramidal cells are reviewed that reflect the specific adaptations that characterize the functional operations in the different regions. These principles of microcircuit function provide a new approach to understanding the expanded functional capabilities elaborated by the evolution of the neocortex.

[1]  W. Bayliss Excitation and Inhibition , 2021, Models of the Mind.

[2]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[3]  C. G. Phillips,et al.  Actions of antidromic pyramidal volleys on single Betz cells in the cat. , 1959, Quarterly journal of experimental physiology and cognate medical sciences.

[4]  P. Andersen Interhippocampal impulses. II. Apical dendritic activation of CAI neurons. , 1960, Acta physiologica Scandinavica.

[5]  K. Andersen,et al.  The blood lactate during recovery from spring runs. , 1960, Acta physiologica Scandinavica.

[6]  E. Kandel,et al.  Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. , 1961, Journal of neurophysiology.

[7]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[8]  C. Stevens,et al.  Synaptic organization of cat olfactory cortex as revealed by intracellular recording. , 1969, Journal of neurophysiology.

[9]  C. Smith,et al.  The brain , 1970 .

[10]  P. Maclean,et al.  Differential effects of septal and olfactory volleys on intracellular responses of hippocampal neurons in awake, sitting monkeys. , 1970, Journal of neurophysiology.

[11]  K. Skrede,et al.  The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. , 1971, Brain research.

[12]  L. Haberly,et al.  Summed potentials evoked in opossum prepyriform cortex. , 1973, Journal of neurophysiology.

[13]  L. Haberly Unitary analysis of opossum prepyriform cortex. , 1973, Journal of neurophysiology.

[14]  G. Shepherd,et al.  Current-density analysis of summed evoked potentials in opossum prepyriform cortex. , 1973, Journal of neurophysiology.

[15]  John S. Kauer,et al.  Local sites of activity-related glucose metabolism in rat olfactory bulb during olfactory stimulation , 1975, Brain Research.

[16]  P. Rakić Local circuit neurons. , 1975, Neurosciences Research Program bulletin.

[17]  F R Sharp,et al.  Laminar analysis of 2-deoxyglucose uptake in olfactory bulb and olfactory cortex of rabbit and rat. , 1977, Journal of neurophysiology.

[18]  E. Kandel,et al.  Contribution of individual mechanoreceptor sensory neurons to defensive gill-withdrawal reflex in Aplysia. , 1978, Journal of neurophysiology.

[19]  G. Shepherd Microcircuits in the nervous system. , 1978, Scientific American.

[20]  G. Shepherd,et al.  Functional organization of rat olfactory bulb analysed by the 2‐deoxyglucose method , 1979, The Journal of comparative neurology.

[21]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[22]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[23]  J. Fuster Prefrontal Cortex , 2018 .

[24]  L. M. Smith,et al.  The thalamocortical projection in Pseudemys turtles: A quantitative electron microscopic study , 1980, The Journal of comparative neurology.

[25]  W. R. Adey The synaptic organization of the brain. 2nd edn. , 1981 .

[26]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[27]  L. Haberly Neuronal circuitry in olfactory cortex: anatomy and functional implications , 1985 .

[28]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[29]  B W Connors,et al.  Cellular physiology of the turtle visual cortex: distinctive properties of pyramidal and stellate neurons , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  B W Connors,et al.  Cellular physiology of the turtle visual cortex: synaptic properties and intrinsic circuitry , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  G. Shepherd,et al.  Logic operations are properties of computer-simulated interactions between excitable dendritic spines , 1987, Neuroscience.

[32]  Matthew A. Wilson,et al.  A Computer Simulation of Olfactory Cortex with Functional Implications for Storage and Retrieval of Olfactory Information , 1987, NIPS.

[33]  Gordon M. Shepherd,et al.  A basic circuit of cortical organization. , 1988 .

[34]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[35]  G. Shepherd,et al.  Comparisons between Active Properties of Distal Dendritic Branches and Spines: Implications for Neuronal Computations , 1989, Journal of Cognitive Neuroscience.

[36]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[37]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[38]  P. Ulinski,et al.  Organization of geniculocortical projections in turtles: Isoazimuth lamellae in the visual cortex , 1990, The Journal of comparative neurology.

[39]  Bartlett W. Mel The Clusteron: Toward a Simple Abstraction for a Complex Neuron , 1991, NIPS.

[40]  Barry W. Connors,et al.  Functions of very distal dendrites: experimental and computational studies of layer 1 synapses on neocortical pyramidal cells , 1992 .

[41]  Bartlett W. Mel NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron , 1992, Neural Computation.

[42]  Gordon M. Shepherd,et al.  The significance of real neuron architectures for neural network simulations , 1993 .

[43]  J. Bower,et al.  Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[44]  C. Koch,et al.  Amplification and linearization of distal synaptic input to cortical pyramidal cells. , 1994, Journal of neurophysiology.

[45]  Richard Axel,et al.  Topographic organization of sensory projections to the olfactory bulb , 1994, Cell.

[46]  Linda B. Buck,et al.  Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb , 1994, Cell.

[47]  R. Guillery Histology of the Nervous System by Santiago Ramón y Cajal. Translated into English from the French edition by Neely Swanson and Larry W. Swanson, Oxford University Press, 1995. $195.00 (1672 pp) ISBN 0 19 507 4017 , 1996, Trends in Neurosciences.

[48]  G. Shepherd,et al.  Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  G. Shepherd,et al.  Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. , 1997, Annual review of neuroscience.

[50]  Bartlett W. Mel,et al.  Translation-Invariant Orientation Tuning in Visual “Complex” Cells Could Derive from Intradendritic Computations , 1998, The Journal of Neuroscience.

[51]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[52]  Bartlett W. Mel Computational neuroscience: Think positive to find parts , 1999, Nature.

[53]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[54]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[55]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[56]  Odor maps in the olfactory bulb. , 2000, The Journal of comparative neurology.

[57]  A. Reiner A hypothesis as to the organization of cerebral cortex in the common amniote ancestor of modern reptiles and mammals. , 2000, Novartis Foundation symposium.

[58]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[59]  M. Häusser,et al.  Neurobiology , 2001, Current Opinion in Neurobiology.

[60]  S. Nelson Cortical Microcircuits Diverse or Canonical? , 2002, Neuron.

[61]  Srdjan D Antic,et al.  Action Potentials in Basal and Oblique Dendrites of Rat Neocortical Pyramidal Neurons , 2003, The Journal of physiology.

[62]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[63]  T. Bliss,et al.  Lamellar organization of hippocampal excitatory pathways , 1971, Experimental Brain Research.

[64]  B. Sakmann,et al.  Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy , 1993, Pflügers Archiv.

[65]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[66]  G. Striedter Principles of brain evolution. , 2005 .

[67]  Gerald E. Hough,et al.  Avian brains and a new understanding of vertebrate brain evolution , 2005, Nature Reviews Neuroscience.

[68]  Fiona E. N. LeBeau,et al.  Microcircuits in action – from CPGs to neocortex , 2005, Trends in Neurosciences.

[69]  Gordon M Shepherd,et al.  Viral tracing identifies distributed columnar organization in the olfactory bulb , 2006, Proceedings of the National Academy of Sciences.

[70]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[71]  S. Grillner,et al.  Microcircuits : the interface between neurons and global brain function , 2006 .

[72]  Donald A. Wilson,et al.  Learning to Smell: Olfactory Perception from Neurobiology to Behavior , 2006 .

[73]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[74]  John Rinzel,et al.  Synchronization of Electrically Coupled Pairs of Inhibitory Interneurons in Neocortex , 2007, The Journal of Neuroscience.

[75]  J. Isaacson,et al.  An Early Critical Period for Long-Term Plasticity and Structural Modification of Sensory Synapses in Olfactory Cortex , 2007, The Journal of Neuroscience.

[76]  Alex A. Pollen,et al.  Comparative aspects of cortical neurogenesis in vertebrates , 2007, Journal of anatomy.

[77]  Shigeo Watanabe,et al.  Dendritic properties of turtle pyramidal neurons. , 2008, Journal of neurophysiology.

[78]  Alex S. Ferecskó,et al.  Local Potential Connectivity in Cat Primary Visual Cortex , 2008 .

[79]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[80]  Jianing Yu,et al.  Top-down laminar organization of the excitatory network in motor cortex , 2008, Nature Neuroscience.

[81]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[82]  Brice Bathellier,et al.  Properties of Piriform Cortex Pyramidal Cell Dendrites: Implications for Olfactory Circuit Design , 2009, The Journal of Neuroscience.

[83]  D. Geschwind,et al.  Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis , 2009, Neuron.

[84]  P. Rakic Evolution of the neocortex: Perspective from developmental biology , 2010 .

[85]  Kevan A. C. Martin,et al.  Topology and dynamics of the canonical circuit of cat V1 , 2009, Neural Networks.

[86]  Thomas Klausberger,et al.  Hippocampus: Intrinsic Organization , 2010 .

[87]  Kevan A. C. Martin,et al.  Canonical cortical circuits , 2010 .

[88]  A. Georgopoulos,et al.  The Motor Cortical Circuit , 2010 .

[89]  Soyoung Q. Park,et al.  The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans , 2010, Brain Structure and Function.

[90]  Michael W. Reimann,et al.  Microcircuitry of the Neocortex , 2010 .

[91]  Soyoung Q. Park,et al.  Annals of the New York Academy of Sciences the Von Economo Neurons in the Frontoinsular and Anterior Cingulate Cortex , 2022 .

[92]  Menno Witter Entorhinal cortex , 2011, Scholarpedia.

[93]  Jack W. Tsao,et al.  Handbook of brain microcircuits Gordon M. Shepherd , 2012, Journal of the Neurological Sciences.