On Balanced Graphs

Berge defined a hypergraph to be balanced if its incidence matrix is balanced. We consider this concept applied to graphs, and call a graph to be balanced when its clique matrix is balanced. Characterizations of balanced graphs by forbidden subgraphs and by clique subgraphs are proved in this work. Using properties of domination we define four subclasses of balanced graphs. Two of them are characterized by 0–1 matrices and can be recognized in polynomial time. Furthermore, we propose polynomial time combinatorial algorithms for the problems of stable set, clique-independent set and clique-transversal for one of these subclasses of balanced graphs. Finally, we analyse the behavior of balanced graphs and these four subclasses under the clique graph operator.

[1]  Kathie Cameron,et al.  Existentially Polytime Theorems , 1990, Polyhedral Combinatorics.

[2]  J. Szwarcfiter A Survey on Clique Graphs , 2003 .

[3]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[4]  Gérard Cornuéjols,et al.  Decomposition of Balanced Matrices , 1999, J. Comb. Theory, Ser. B.

[5]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[6]  Martin Charles Golumbic Not So Perfect Graphs , 2004 .

[7]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[8]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[9]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[10]  Zsolt Tuza,et al.  Neighborhood perfect graphs , 1986, Discret. Math..

[11]  V. Rich Personal communication , 1989, Nature.

[12]  George L. Nemhauser,et al.  Algorithms for minimum covering by cliques and maximum clique in claw-free perfect graphs , 1981, Discret. Math..

[13]  C. Berge,et al.  SUR UN THEOREMS DU TYPE KÖNIG POUR HYPERGRAPHES , 1970 .

[14]  F. Protti,et al.  Clique-inverse graphs of bipartite graphs , 2004 .

[15]  D. R. Fulkerson,et al.  On balanced matrices , 1974 .

[16]  Martin Farber,et al.  Characterizations of strongly chordal graphs , 1983, Discret. Math..

[17]  F. Escalante Über iterierte Clique-Graphen , 1973 .

[18]  G. Cornuéjols,et al.  Combinatorial optimization : packing and covering , 2001 .

[19]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[20]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[21]  C. Pandu Rangan,et al.  Algorithmic aspects of clique-transversal and clique-independent sets , 2000, Discret. Appl. Math..

[22]  A. Lubiw Orderings and some combinatorial optimization problems with geometric applications , 1986 .

[23]  V. Chvátal On certain polytopes associated with graphs , 1975 .

[24]  Richard P. Anstee,et al.  Characterizations of Totally Balanced Matrices , 1984, J. Algorithms.

[25]  Najiba Sbihi,et al.  Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..

[26]  R. Hamelink A partial characterization of clique graphs , 1968 .

[27]  Gérard Cornuéjols,et al.  Balanced matrices , 2006, Discret. Math..

[28]  Martin Schriefer,et al.  Recombinant Assay for Serodiagnosis of Lyme Disease Regardless of OspA Vaccination Status , 2002, Journal of Clinical Microbiology.

[29]  B. Reed,et al.  Recent advances in algorithms and combinatorics , 2003 .

[30]  Mirka Miller,et al.  Maximum h-Colourable Subgraph Problem in Balanced Graphs , 1998, Inf. Process. Lett..