Blind MIMO system identification based on cumulant subspace decomposition

Blind identification of multiple-input multiple-output (MIMO) linear systems can be achieved by utilizing higher order statistics of the output signals. We study the blind identification of MIMO systems whose inputs are mutually independent, temporally white, non-Gaussian source signals. Based on sub-space analysis, we develop a new linear batch algorithm to identify MIMO systems from the common nullspace of a set of fourth-order cumulant matrices of the channel outputs. Given knowledge of the channel orders, the identifiability conditions required by the proposed algorithm are properly established. Like most subspace-based approaches, this new algorithm remains sensitive to channel order overestimation. Simulation results illustrate its performance for various channel models.

[1]  Ehud Weinstein,et al.  New criteria for blind deconvolution of nonminimum phase systems (channels) , 1990, IEEE Trans. Inf. Theory.

[2]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[3]  Lang Tong,et al.  A finite-step global convergence algorithm for the parameter estimation of multichannel MA processes , 1992, IEEE Trans. Signal Process..

[4]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[5]  Philippe Loubaton,et al.  A subspace algorithm for certain blind identification problems , 1997, IEEE Trans. Inf. Theory.

[6]  Yujiro Inouye,et al.  Cumulant-based blind identification of linear multi-input-multi-output systems driven by colored inputs , 1997, IEEE Trans. Signal Process..

[7]  Georgios B. Giannakis,et al.  Signal Processing Advances in Wireless and Mobile Communications, Volume 2: Trends in Single- and Multi-User Systems , 2000 .

[8]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  L. Tong,et al.  Multichannel blind identification: from subspace to maximum likelihood methods , 1998, Proc. IEEE.

[10]  Lang Tong,et al.  Blind identification and equalization based on second-order statistics: a time domain approach , 1994, IEEE Trans. Inf. Theory.

[11]  Zhi Ding,et al.  A matrix-pencil approach to blind separation of colored nonstationary signals , 2000, IEEE Trans. Signal Process..

[12]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[13]  Avinash C. Kak,et al.  Array signal processing , 1985 .

[14]  Jitendra K. Tugnait,et al.  Blind spatio-temporal equalization and impulse response estimation for MIMO channels using a Godard cost function , 1997, IEEE Trans. Signal Process..

[15]  J. Mendel,et al.  Cumulant based identification of multichannel moving-average models , 1989 .

[16]  Philippe Loubaton,et al.  On blind multiuser forward link channel estimation by the subspace method: identifiability results , 2000, IEEE Trans. Signal Process..

[17]  Karim Abed-Meraim,et al.  Blind identification of multi-input multi-output system using minimum noise subspace , 1997, IEEE Trans. Signal Process..

[18]  Lang Tong,et al.  Identification of multichannel MA parameters using higher-order statistics , 1996, Signal Process..

[19]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[20]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[21]  Jitendra K. Tugnait,et al.  Multistep linear predictors-based blind identification and equalization of multiple-input multiple-output channels , 2000, IEEE Trans. Signal Process..

[22]  Jitendra K. Tugnait Parameter identifiability of multichannel ARMA models of linear non-Gaussian signals via cumulant matching , 1995, IEEE Trans. Signal Process..

[23]  Jitendra Tugnait Blind equalization and estimation of digital communication FIR channels using cumulant matching , 1992, [1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers.

[24]  Ananthram Swami,et al.  Bibliography on higher-order statistics , 1997, Signal Process..

[25]  Georgios B. Giannakis,et al.  Signal processing advances in wireless and mobile communications , 2000, IEEE Signal Process. Mag..

[26]  Thomas Kailath,et al.  Linear Systems , 1980 .

[27]  Antoine Souloumiac,et al.  Jacobi Angles for Simultaneous Diagonalization , 1996, SIAM J. Matrix Anal. Appl..

[28]  Yujiro Inouye,et al.  Iterative algorithms based on multistage criteria for multichannel blind deconvolution , 1999, IEEE Trans. Signal Process..

[29]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[30]  Jitendra K. Tugnait,et al.  Identification and deconvolution of multichannel linear non-Gaussian processes using higher order statistics and inverse filter criteria , 1997, IEEE Trans. Signal Process..

[31]  P. Comon Independent Component Analysis , 1992 .

[32]  Geoffrey Ye Li,et al.  Adaptive Blind Source Separation and Equalization for Multiple-Input/Multiple-Output Systems , 1998, IEEE Trans. Inf. Theory.

[33]  Jean-Francois Cardoso,et al.  Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[34]  Dinh-Tuan Pham,et al.  Blind separation of instantaneous mixtures of nonstationary sources , 2001, IEEE Trans. Signal Process..

[35]  Zhi Ding Matrix outer-product decomposition method for blind multiple channel identification , 1997, IEEE Trans. Signal Process..

[36]  Athina P. Petropulu,et al.  Frequency domain blind MIMO system identification based on second and higher order statistics , 2001, IEEE Trans. Signal Process..

[37]  Jitendra K. Tugnait,et al.  Parameter estimation for noncausal ARMA models of non-Gaussian signals via cumulant matching , 1995, IEEE Trans. Signal Process..

[38]  Philippe Loubaton,et al.  Prediction error method for second-order blind identification , 1997, IEEE Trans. Signal Process..

[39]  Zhi Ding,et al.  A cumulant matrix subspace algorithm for blind single FIR channel identification , 2001, IEEE Trans. Signal Process..

[40]  Ananthram Swami,et al.  Multichannel ARMA processes , 1994, IEEE Trans. Signal Process..

[41]  Sophia Antipolis Cedex,et al.  BLIND FRACTIONALLY-SPACED EQUALIZATION, PERFECT-RECONSTRUCTION FILTER BANKS AND MULTICHANNEL LINEAR PREDICTION , 1994 .

[42]  Peter Adam Hoeher,et al.  A statistical discrete-time model for the WSSUS multipath channel , 1992 .

[43]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[44]  Eric Moreau,et al.  A generalization of joint-diagonalization criteria for source separation , 2001, IEEE Trans. Signal Process..

[45]  D. Brillinger Time Series: Data Analysis and Theory. , 1981 .

[46]  Michael G. Larimore,et al.  New processing techniques based on the constant modulus adaptive algorithm , 1985, IEEE Trans. Acoust. Speech Signal Process..

[47]  Inbar Fijalkow,et al.  A globally convergent approach for blind MIMO adaptive deconvolution , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[48]  Ruey-Wen Liu,et al.  General approach to blind source separation , 1996, IEEE Trans. Signal Process..

[49]  M. Wax,et al.  A least-squares approach to joint diagonalization , 1997, IEEE Signal Processing Letters.