Synthetic 2D LIDAR for precise vehicle localization in 3D urban environment

This paper presents a precise localization algorithm for vehicles in 3D urban environment with only one 2D LIDAR and odometry information. A novel idea of synthetic 2D LIDAR is proposed to solve the localization problem on a virtual 2D plane. A Monte Carlo Localization scheme is adopted for vehicle position estimation, based on synthetic LIDAR measurements and odometry information. The accuracy and robustness of the proposed algorithm are demonstrated by performing real time localization in a 1.5 km driving test around the NUS campus area.

[1]  Craig M. Shakarji,et al.  Least-Squares Fitting Algorithms of the NIST Algorithm Testing System , 1998, Journal of research of the National Institute of Standards and Technology.

[2]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[3]  Sebastian Thrun,et al.  Map-Based Precision Vehicle Localization in Urban Environments , 2007, Robotics: Science and Systems.

[4]  Stefan Kohlbrecher,et al.  A flexible and scalable SLAM system with full 3D motion estimation , 2011, 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics.

[5]  José E. Guivant,et al.  Global urban localization based on road maps , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Kai Oliver Arras,et al.  FLIRT - Interest regions for 2D range data , 2010, 2010 IEEE International Conference on Robotics and Automation.

[7]  Roland Chapuis,et al.  Radar Scan Matching SLAM Using the Fourier-Mellin Transform , 2009, FSR.

[8]  John B. Moore,et al.  Direct Kalman filtering approach for GPS/INS integration , 2002 .

[9]  Terry Caelli,et al.  Computation of Surface Geometry and Segmentation Using Covariance Techniques , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Roland Siegwart,et al.  A Fast and Robust 3D Feature Extraction Algorithm for Structured Environment Reconstruction , 2003 .

[11]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[12]  Emilio Frazzoli,et al.  Curb-intersection feature based Monte Carlo Localization on urban roads , 2012, 2012 IEEE International Conference on Robotics and Automation.

[13]  Maan El Badaoui El Najjar,et al.  A Road-Matching Method for Precise Vehicle Localization Using Belief Theory and Kalman Filtering , 2005, Auton. Robots.

[14]  T. Kos,et al.  Effects of multipath reception on GPS positioning performance , 2010, Proceedings ELMAR-2010.

[15]  H. Carvalho,et al.  Optimal nonlinear filtering in GPS/INS integration , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Wolfram Burgard,et al.  Monte Carlo localization in outdoor terrains using multilevel surface maps , 2008, J. Field Robotics.

[17]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[18]  Sebastian Thrun,et al.  Robust vehicle localization in urban environments using probabilistic maps , 2010, 2010 IEEE International Conference on Robotics and Automation.

[19]  Bernardo Wagner,et al.  Localization in a wide range of industrial environments using relative 3D ceiling features , 2008, 2008 IEEE International Conference on Emerging Technologies and Factory Automation.

[20]  Paul Newman,et al.  Road vehicle localization with 2D push-broom LIDAR and 3D priors , 2012, 2012 IEEE International Conference on Robotics and Automation.

[21]  Wolfram Burgard,et al.  Monte Carlo localization in outdoor terrains using multilevel surface maps , 2008 .

[22]  Philippe Bonnifait,et al.  Global Localization Robust to GPS Outages using a Vertical Ladar , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[23]  Paul Newman,et al.  High quality 3D laser ranging under general vehicle motion , 2008, 2008 IEEE International Conference on Robotics and Automation.

[24]  A. H. Mohamed,et al.  Adaptive Kalman Filtering for INS/GPS , 1999 .

[25]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[26]  Joachim Hertzberg,et al.  6D SLAM—3D mapping outdoor environments , 2007, J. Field Robotics.

[27]  Bernardo Wagner,et al.  Robust Self-Localization in Industrial Environments based on 3D Ceiling Structures , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Takashi Uozumi,et al.  Precise position estimation of autonomous vehicle based on map-matching , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[29]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[30]  Radu Bogdan Rusu,et al.  Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments , 2010, KI - Künstliche Intelligenz.

[31]  Martin Buss,et al.  Comparison of surface normal estimation methods for range sensing applications , 2009, 2009 IEEE International Conference on Robotics and Automation.