A friendly smoothed analysis of the simplex method

Explaining the excellent practical performance of the simplex method for linear programming has been a major topic of research for over 50 years. One of the most successful frameworks for understanding the simplex method was given by Spielman and Teng (JACM ‘04), who the developed the notion of smoothed analysis. Starting from an arbitrary linear program with d variables and n constraints, Spielman and Teng analyzed the expected runtime over random perturbations of the LP (smoothed LP), where variance σ Gaussian noise is added to the LP data. In particular, they gave a two-stage shadow vertex simplex algorithm which uses an expected O(n86 d55 σ−30) number of simplex pivots to solve the smoothed LP. Their analysis and runtime was substantially improved by SpielmanDeshpande (FOCS ‘05) and later Vershynin (SICOMP ‘09). The fastest current algorithm, due to Vershynin, solves the smoothed LP using an expected O(d3 log3 n σ−4 + d9log7 n) number of pivots, improving the dependence on n from polynomial to logarithmic. While the original proof of SpielmanTeng has now been substantially simplified, the resulting analyses are still quite long and complex and the parameter dependencies far from optimal. In this work, we make substantial progress on this front, providing an improved and simpler analysis of shadow simplex methods, where our main algorithm requires an expected O(d2 √logn σ−2 + d5 log3/2 n) number of simplex pivots. We obtain our results via an improved shadow bound, key to earlier analyses as well, combined with algorithmic techniques of Borgwardt (ZOR ‘82) and Vershynin. As an added bonus, our analysis is completely modular, allowing us to obtain non-trivial bounds for perturbations beyond Gaussians, such as Laplace perturbations.

[1]  Ming S. Hung,et al.  Technical Note - A Polynomial Simplex Method for the Assignment Problem , 1983, Oper. Res..

[2]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[3]  Nimrod Megiddo,et al.  A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension , 1984, STOC '84.

[4]  Francisco Santos,et al.  A counterexample to the Hirsch conjecture , 2010, ArXiv.

[5]  Karl Heinz Borgwardt,et al.  The average number of pivot steps of the simplex-algorithm based on a generalized rotation-symmetry-model , 2014, Math. Methods Oper. Res..

[6]  Friedrich Eisenbrand,et al.  On Sub-determinants and the Diameter of Polyhedra , 2011, SoCG '12.

[7]  David W. Barnette An upper bound for the diameter of a polytope , 1974, Discret. Math..

[8]  Martin E. Dyer,et al.  Random walks, totally unimodular matrices, and a randomised dual simplex algorithm , 1994, IPCO.

[9]  Stephen Smale,et al.  On the average number of steps of the simplex method of linear programming , 1983, Math. Program..

[10]  Katta G. Murty,et al.  Computational complexity of parametric linear programming , 1980, Math. Program..

[11]  Xavier Goaoc,et al.  Smoothed complexity of convex hulls by witnesses and collectors , 2016, J. Comput. Geom..

[12]  Daniel A. Spielman,et al.  Improved smoothed analysis of the shadow vertex simplex method , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[13]  Jesús A. De Loera,et al.  Graphs of transportation polytopes , 2007, J. Comb. Theory, Ser. A.

[14]  Nimrod Megiddo,et al.  Improved asymptotic analysis of the average number of steps performed by the self-dual simplex algorithm , 1986, Math. Program..

[15]  Gil Kalai,et al.  A subexponential randomized simplex algorithm (extended abstract) , 1992, STOC '92.

[16]  Donald Goldfarb,et al.  Efficient Shortest Path Simplex Algorithms , 1990, Oper. Res..

[17]  F. Santos,et al.  The width of five‐dimensional prismatoids , 2012, 1202.4701.

[18]  Yinyu Ye,et al.  The Simplex Method is Strongly Polynomial for Deterministic Markov Decision Processes , 2012, Math. Oper. Res..

[19]  Bruno Benedetti,et al.  The Hirsch Conjecture Holds for Normal Flag Complexes , 2014, Math. Oper. Res..

[20]  Éva Tardos,et al.  Polynomial dual network simplex algorithms , 2011, Math. Program..

[21]  Michael J. Todd,et al.  Polynomial expected behavior of a pivoting algorithm for linear complementarity and linear programming problems , 1986, Math. Program..

[22]  Yinyu Ye,et al.  The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate , 2011, Math. Oper. Res..

[23]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[24]  G. Kalai,et al.  A quasi-polynomial bound for the diameter of graphs of polyhedra , 1992, math/9204233.

[26]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[27]  Noriyoshi Sukegawa An Asymptotically Improved Upper Bound on the Diameter of Polyhedra , 2019, Discret. Comput. Geom..

[28]  Robert E. Bixby,et al.  A Brief History of Linear and Mixed-Integer Programming Computation , 2012 .

[29]  D. Goldfarb USING THE STEEPEST-EDGE SIMPLEX ALGORITHM TO SOLVE SPARSE LINEAR PROGRAMS , 1976 .

[30]  Robert E. Bixby,et al.  MIP: Theory and Practice - Closing the Gap , 1999, System Modelling and Optimization.

[31]  Uri Zwick,et al.  Subexponential lower bounds for randomized pivoting rules for the simplex algorithm , 2011, STOC '11.

[32]  R. Gisser Extended abstract , 2011 .

[33]  Bodo Manthey,et al.  Smoothed Analysis of the k-Means Method , 2011, JACM.

[34]  Robert G. Jeroslow,et al.  The simplex algorithm with the pivot rule of maximizing criterion improvement , 1973, Discret. Math..

[35]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[36]  Kamiel Cornelissen,et al.  Smoothed Analysis of the Successive Shortest Path Algorithm , 2013, SIAM J. Comput..

[37]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[38]  T. Koopmans,et al.  Activity Analysis of Production and Allocation. , 1952 .

[39]  Yin Tat Lee,et al.  Path Finding Methods for Linear Programming: Solving Linear Programs in Õ(vrank) Iterations and Faster Algorithms for Maximum Flow , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[40]  Andrew V. Goldberg,et al.  Use of dynamic trees in a network simplex algorithm for the maximum flow problem , 1991, Math. Program..

[41]  K. Borgwardt A Sharp Upper Bound for the Expected Number of Shadow Vertices in Lp-Polyhedra Under Orthogonal Projection on Two-Dimensional Planes , 1999 .

[42]  Daniel A. Spielman,et al.  A randomized polynomial-time simplex algorithm for linear programming , 2006, STOC '06.

[43]  Leen Stougie,et al.  A Linear Bound On The Diameter Of The Transportation Polytope* , 2006, Comb..

[44]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[45]  Gabriele Höfner Lineare Optimierung mit dem Schatteneckenalgorithmus: Untersuchungen zum mittleren Rechenaufwand und Entartungsverhalten , 1995 .

[46]  F. Glover,et al.  A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees , 1979, Networks.

[47]  Karl-Heinz Borgwardt,et al.  The Average number of pivot steps required by the Simplex-Method is polynomial , 1982, Z. Oper. Research.

[48]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[49]  T. L. Saaty,et al.  The computational algorithm for the parametric objective function , 1955 .

[50]  Michael J. Todd,et al.  An Improved Kalai-Kleitman Bound for the Diameter of a Polyhedron , 2014, SIAM J. Discret. Math..

[51]  Daniel Dadush,et al.  On the Shadow Simplex Method for Curved Polyhedra , 2015, Symposium on Computational Geometry.

[52]  Richard M. Karp,et al.  A simplex variant solving an m times d linear program in O(min(m2, d2) expected number of pivot steps , 1987, J. Complex..

[53]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[54]  J. Orlin Working Paper Alfred P. Sloan School of Management Genuinely Polynominal Simplex and Non-simplex Algorithms for the Minimum Cost Flow Problem Genuinely Polynominal Simplex and Non-simplex Algorithms for the Minimum Cost Flow Problem , 2008 .

[55]  Donald Goldfarb,et al.  Polynomial-time primal simplex algorithms for the minimum cost network flow problem , 2005, Algorithmica.

[56]  Jesús A. De Loera,et al.  The diameters of network-flow polytopes satisfy the Hirsch conjecture , 2018, Math. Program..

[57]  V. Chvátal,et al.  Notes on Bland’s pivoting rule , 1978 .

[58]  Donald Goldfarb,et al.  A primal simplex algorithm that solves the maximum flow problem in at mostnm pivots and O(n2m) time , 1990, Math. Program..

[59]  Christian Sohler,et al.  Extreme Points Under Random Noise , 2004, ESA.

[60]  William Y. Sit,et al.  Worst case behavior of the steepest edge simplex method , 1979, Discret. Appl. Math..

[61]  R. Shamir The Efficiency of the Simplex Method: A Survey , 1987 .

[62]  Shang-Hua Teng,et al.  Smoothed analysis of termination of linear programming algorithms , 2003, Math. Program..

[63]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[64]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[65]  Oliver Friedmann,et al.  A Subexponential Lower Bound for Zadeh's Pivoting Rule for Solving Linear Programs and Games , 2011, IPCO.

[66]  Xavier Goaoc,et al.  On the Smoothed Complexity of Convex Hulls , 2015, Symposium on Computational Geometry.

[67]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[68]  D. Larman Paths on Polytopes , 1970 .

[69]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[70]  Roman Vershynin,et al.  Beyond Hirsch Conjecture: Walks on Random Polytopes and Smoothed Complexity of the Simplex Method , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[71]  S. Huiberts How Large is the Shadow? Smoothed Analysis of the Simplex Method , 2018 .

[72]  Heiko Röglin,et al.  Solving Totally Unimodular LPs with the Shadow Vertex Algorithm , 2015, STACS.

[73]  Uri Zwick,et al.  An Improved Version of the Random-Facet Pivoting Rule for the Simplex Algorithm , 2015, STOC.

[74]  Denis Naddef,et al.  The hirsch conjecture is true for (0, 1)-polytopes , 1989, Mathematical programming.

[75]  Santosh S. Vempala,et al.  Geometric random edge , 2014, Math. Program..

[76]  Leo F. Boron,et al.  Theory of Convex Bodies , 1988 .

[77]  Donald Goldfarb,et al.  Steepest-edge simplex algorithms for linear programming , 1992, Math. Program..

[78]  Berthold Vöcking,et al.  Worst Case and Probabilistic Analysis of the 2-Opt Algorithm for the TSP , 2007, SODA '07.

[79]  Shang-Hua Teng,et al.  Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices , 2003, SIAM J. Matrix Anal. Appl..

[80]  M. L. Balinski,et al.  The Hirsch Conjecture for Dual Transportation Polyhedra , 1984, Math. Oper. Res..

[81]  James Renegar,et al.  A polynomial-time algorithm, based on Newton's method, for linear programming , 1988, Math. Program..