High-resolution eye tracking using V1 neuron activity

Studies of high-acuity visual cortical processing have been limited by the inability to track eye position with sufficient accuracy to precisely reconstruct the visual stimulus on the retina. As a result, studies on primary visual cortex (V1) have been performed almost entirely on neurons outside the high-resolution central portion of the visual field (the fovea). Here we describe a procedure for inferring eye position using multi-electrode array recordings from V1 coupled with nonlinear stimulus processing models. We show that this method can be used to infer eye position with one arc-minute accuracy – significantly better than conventional techniques. This allows for analysis of foveal stimulus processing, and provides a means to correct for eye-movement induced biases present even outside the fovea. This method could thus reveal critical insights into the role of eye movements in cortical coding, as well as their contribution to measures of cortical variability.

[1]  S. Martinez-Conde,et al.  The impact of microsaccades on vision: towards a unified theory of saccadic function , 2013, Nature Reviews Neuroscience.

[2]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[3]  Xiangmin Xu,et al.  How do functional maps in primary visual cortex vary with eccentricity? , 2007, The Journal of comparative neurology.

[4]  A. A. Skavenski,et al.  Miniature eye movement. , 1973, Science.

[5]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[6]  Martina Poletti,et al.  Miniature eye movements enhance fine spatial detail , 2007, Nature.

[7]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[8]  Xoana G. Troncoso,et al.  Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. , 2008, Journal of vision.

[9]  F. Windmeijer,et al.  R-Squared Measures for Count Data Regression Models With Applications to Health-Care Utilization , 1996 .

[10]  Moshe Gur,et al.  Eye position compensation improves estimates of response magnitude and receptive field geometry in alert monkeys. , 2007, Journal of neurophysiology.

[11]  N. Kanwisher,et al.  Feedback of pVisual Object Information to Foveal Retinotopic Cortex , 2008, Nature Neuroscience.

[12]  William T. Newsome,et al.  Tracking the eye non-invasively: simultaneous comparison of the scleral search coil and optical tracking techniques in the macaque monkey , 2012, Front. Behav. Neurosci..

[13]  Doris Y. Tsao,et al.  Receptive fields of disparity-selective neurons in macaque striate cortex , 1999, Nature Neuroscience.

[14]  J. Touryan,et al.  Isolation of Relevant Visual Features from Random Stimuli for Cortical Complex Cells , 2002, The Journal of Neuroscience.

[15]  Martina Poletti,et al.  Microscopic Eye Movements Compensate for Nonhomogeneous Vision within the Fovea , 2013, Current Biology.

[16]  L. Riggs,et al.  Eye Movements Recorded During Convergence and Divergence , 1960 .

[17]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[18]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[19]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[20]  Bruce G Cumming,et al.  Measuring V1 receptive fields despite eye movements in awake monkeys. , 2003, Journal of neurophysiology.

[21]  Frank Bremmer,et al.  Eye-Position Signals in the Dorsal Visual System Are Accurate and Precise on Short Timescales , 2013, The Journal of Neuroscience.

[22]  Bevil R. Conway,et al.  Receptive Fields of Disparity-Tuned Simple Cells in Macaque V1 , 2003, Neuron.

[23]  S. Celebrini,et al.  Gaze direction controls response gain in primary visual-cortex neurons , 1999, Nature.

[24]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[25]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[26]  Peter Dayan,et al.  The Effect of Correlated Variability on the Accuracy of a Population Code , 1999, Neural Computation.

[27]  D. Hubel,et al.  Stereoscopic Vision in Macaque Monkey: Cells sensitive to Binocular Depth in Area 18 of the Macaque Monkey Cortex , 1970, Nature.

[28]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[29]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[30]  J. Hertz,et al.  Insensitivity of V1 complex cell responses to small shifts in the retinal image of complex patterns. , 1997, Journal of neurophysiology.

[31]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[32]  H. Collewijn,et al.  The significance of microsaccades for vision and oculomotor control. , 2008, Journal of vision.

[33]  Il Memming Park,et al.  Bayesian Spike-Triggered Covariance Analysis , 2011, NIPS.

[34]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[35]  Carlos Hitoshi Morimoto,et al.  Pupil detection and tracking using multiple light sources , 2000, Image Vis. Comput..

[36]  Uri T Eden,et al.  A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. , 2005, Journal of neurophysiology.

[37]  S. Zeki The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  Biing-Hwang Juang,et al.  The segmental K-means algorithm for estimating parameters of hidden Markov models , 1990, IEEE Trans. Acoust. Speech Signal Process..

[39]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[40]  Valentin I. Spitkovsky,et al.  Viterbi Training Improves Unsupervised Dependency Parsing , 2010, CoNLL.

[41]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[42]  G. Legge,et al.  Functional and cortical adaptations to central vision loss , 2005, Visual Neuroscience.

[43]  Liam Paninski,et al.  Fast interior-point inference in high-dimensional sparse, penalized state-space models , 2012, AISTATS.

[44]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[45]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[46]  T. Sharpee,et al.  Estimating linear–nonlinear models using Rényi divergences , 2009, Network.

[47]  Eero P. Simoncelli,et al.  Efficient and direct estimation of a neural subunit model for sensory coding , 2012, NIPS.

[48]  Jonathan W Peirce,et al.  Residual eye-movements in macaque and their effects on visual responses of neurons , 2002, Visual Neuroscience.

[49]  Emery N. Brown,et al.  Context Matters: The Illusive Simplicity of Macaque V1 Receptive Fields , 2012, PloS one.

[50]  L. Paninski Maximum likelihood estimation of cascade point-process neural encoding models , 2004, Network.

[51]  D. Snodderly,et al.  Response Variability of Neurons in Primary Visual Cortex (V1) of Alert Monkeys , 1997, The Journal of Neuroscience.

[52]  D. Snodderly,et al.  Studying striate cortex neurons in behaving monkeys: Benefits of image stabilization , 1987, Vision Research.

[53]  L. Paninski,et al.  Temporal Precision in the Visual Pathway through the Interplay of Excitation and Stimulus- Driven Suppression , 2022 .

[54]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[55]  Yuwei Cui,et al.  Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs , 2013, PLoS Comput. Biol..

[56]  Xoana G. Troncoso,et al.  Microsaccadic Efficacy and Contribution to Foveal and Peripheral Vision , 2012, The Journal of Neuroscience.

[57]  Jadin C. Jackson,et al.  Quantitative measures of cluster quality for use in extracellular recordings , 2005, Neuroscience.