Dual Cayley–Klein parameters and Möbius transform: Theory and applications

[1]  Jorge Angeles,et al.  The Synthesis of the Axodes of RCCC Linkages , 2016 .

[2]  L. Marek-Crnjac From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and superstrings to Cantorian space–time , 2008 .

[3]  E. Pennestrì,et al.  Linear algebra and numerical algorithms using dual numbers , 2007 .

[4]  William B. Heard,et al.  Rigid Body Mechanics , 2005 .

[5]  O. Bauchau,et al.  The Vectorial Parameterization of Rotation , 2003 .

[6]  John R. Taylor,et al.  Classical Mechanics , 1997, Epistemology and Natural Philosophy in the 18th Century.

[7]  Harry H. Cheng,et al.  Singularity Analysis of Spatial Mechanisms Using Dual Polynomials and Complex Dual Numbers , 1999 .

[8]  Harry H. Cheng,et al.  Dual iterative displacement analysis of spatial mechanisms using the CH programming language , 1997 .

[9]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[10]  A. T. Yang,et al.  Application of Dual-Number Matrices to the Inverse Kinematics Problem of Robot Manipulators , 1985 .

[11]  J. Rooney A Survey of Representations of Spatial Rotation about a Fixed Point , 1977 .

[12]  J. Stuelpnagel On the Parametrization of the Three-Dimensional Rotation Group , 1964 .

[13]  A. C. Robinson,et al.  ON THE USE OF QUATERNIONS IN SIMULATION OF RIGID-BODY MOTION , 1958 .

[14]  A. Cayley On the correspondence of Homographies and Rotations , 1879 .

[15]  A. C. Esq. XXVIII. On the application of quaternions to the theory of rotation , 1848 .

[16]  Ettore Pennestrì,et al.  Linear Dual Algebra Algorithms and their Application to Kinematics , 2009 .

[17]  A. Cayley The Collected Mathematical Papers: On the application of Quaternions to the Theory of Rotation , 2009 .

[18]  A. Cayley The Collected Mathematical Papers: On the Motion of Rotation of a Solid Body , 2009 .

[19]  J. Dai An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist , 2006 .

[20]  E. Majorana,et al.  Ettore Majorana : notes on theoretical physics , 2003 .

[21]  Tung-Mow Yan,et al.  Quantum Mechanics : Fundamentals , 2003 .

[22]  Gordon R. Pennock,et al.  GEOMETRIC INSIGHT INTO THE DYNAMICS OF A RIGID BODY USING THE THEORY OF SCREWS , 2000 .

[23]  Joseph Duffy,et al.  The principle of transference: History, statement and proof , 1993 .

[24]  M. Shuster A survey of attitude representation , 1993 .

[25]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: THE GENERAL THEORY OF ORBITS , 1988 .

[26]  Roger Cooke,et al.  The mathematics of Sonya Kovalevskaya , 1984 .

[27]  P. Nikravesh Spatial Kinematic and Dynamic Analysis with Euler Parameters , 1984 .

[28]  G. Golub Matrix computations , 1983 .

[29]  V. N. Koshliakov On the application of the Rodrigues-Hamilton and Cayley-Klein parameters in the applied theory of gyroscopes , 1965 .

[30]  N. G. Chetaev The problem of klein , 1960 .

[31]  N. G. Chetaev On the stability of rough systems , 1960 .

[32]  R. Bricard Leçons de cinématique , 1926 .

[33]  B. Riemann,et al.  Ueber die Fläche vom kleinsten Inhalt bei gegebener Begrenzung , 1867 .