Using Moderate-Resolution Satellite Sensors for Monitoring the Biophysical Parameters and Phenology of Tidal Marshes

[1]  Geoff Smith,et al.  Remote sensing of geomorphological and ecological change in response to saltmarsh managed realignment, The Wash, UK , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[2]  Ross S. Lunetta,et al.  Application of multi-temporal Landsat 5 TM imagery for wetland identification , 1999 .

[3]  A. Goudie Characterising the distribution and morphology of creeks and pans on salt marshes in England and Wales using Google Earth , 2013 .

[4]  S. Ustin,et al.  Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. , 2009, Journal of Environmental Management.

[5]  R. Fuller,et al.  Ground and airborne radiometry over intertidal surfaces: Waveband selection for cover classification , 1998 .

[6]  Maycira Costa,et al.  Landcover classification of the Lower Nhecolândia subregion of the Brazilian Pantanal Wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery , 2013 .

[7]  A. Skidmore,et al.  Spectral discrimination of vegetation types in a coastal wetland , 2003 .

[8]  Ryan R. Jensen,et al.  Spectral analysis of coastal vegetation and land cover using AISA+ hyperspectral data , 2007 .

[9]  Caiyun Zhang,et al.  Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery , 2012 .

[10]  D. Civco,et al.  Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh , 2008 .

[11]  Michael Traber,et al.  Mapping Salt Marshes in Jamaica Bay and Terrestrial Vegetation in Fire Island National Seashore Using QuickBird Satellite Data , 2009 .

[12]  Tim J. Malthus,et al.  AIRBORNE REMOTE SENSING OF MACROPHYTES IN CEFNI RESERVOIR, ANGLESEY, UK , 1997 .

[13]  Stacy L. Ozesmi,et al.  Satellite remote sensing of wetlands , 2002, Wetlands Ecology and Management.

[14]  Brigitte Poulin,et al.  Wetland monitoring using classification trees and SPOT-5 seasonal time series , 2010 .

[15]  M. F. Gross,et al.  Remote sensing of coastal wetlands , 1986 .

[16]  Zhang Xiangmin,et al.  Comparison of pixel‐based and object‐oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China , 2006 .

[17]  A. Hastings,et al.  Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data , 2005 .

[18]  Gail L. Chmura,et al.  Carbon accumulation in bay of fundy salt marshes: Implications for restoration of reclaimed marshes , 2001 .

[19]  Mapping the Onset and Progression of Marsh Dieback , 2009 .

[20]  O. Mutanga,et al.  Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review , 2010, Wetlands Ecology and Management.

[21]  D. Cahoon,et al.  Global carbon sequestration in tidal, saline wetland soils , 2003 .

[22]  Ram M. Narayanan,et al.  A review of wetlands remote sensing and defining new considerations , 2001 .

[23]  V. Klemas Remote Sensing of Wetlands: Case Studies Comparing Practical Techniques , 2011 .

[24]  Philippe C. Baveye,et al.  Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery , 2008 .

[25]  J. Campbell Introduction to remote sensing , 1987 .

[26]  Francisco Artigas,et al.  Balloon imagery verification of remotely sensed Phragmites australis expansion in an urban estuary of New Jersey, USA , 2010 .

[27]  John M. Melack,et al.  Characterizing patterns of plant distribution in a southern California salt marsh using remotely sensed topographic and hyperspectral data and local tidal fluctuations , 2007 .

[28]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[29]  Ranga B. Myneni,et al.  The Impact of Potential Land Cover Misclassification on MODIS Leaf Area Index (LAI) Estimation: A Statistical Perspective , 2013, Remote. Sens..

[30]  David Aragonés,et al.  Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images. , 2009, Journal of environmental management.

[31]  Philippe C. Baveye,et al.  Use of textural measurements to map invasive wetland plants in the Hudson River National Estuarine Research Reserve with IKONOS satellite imagery , 2010 .

[32]  D. M. Ghioca-Robrecht,et al.  Assessing the use of multiseason QuickBird imagery for mapping invasive species in a Lake Erie coastal Marsh , 2008, Wetlands.

[33]  Paul B.T. Merani,et al.  Post-spill state of the marsh: Remote estimation of the ecological impact of the Gulf of Mexico oil spill on Louisiana Salt Marshes , 2012 .

[34]  Marguerite Madden,et al.  Hyperspectral image data for mapping wetland vegetation , 2003, Wetlands.

[35]  M. Kennish Coastal salt marsh systems in the U.S.: A review of anthropogenic impacts , 2001 .

[36]  J. Kovacs,et al.  Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach , 2009, Environmental monitoring and assessment.

[37]  Vytautas Klemas,et al.  Remote sensing of biomass and annual net aerial primary productivity of a salt marsh , 1984 .

[38]  A. Gitelson,et al.  Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves , 2006 .

[39]  P. Chavez Image-Based Atmospheric Corrections - Revisited and Improved , 1996 .

[40]  Anatoly A. Gitelson,et al.  Collecting Spectral Data over Cropland Vegetation Using Machine-Positioning versus Hand-Positioning of the Sensor , 2004 .

[41]  S. Ustin,et al.  Application of multiple endmember spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China Camp, CA, USA , 2005 .

[42]  A. Gitelson Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. , 2004, Journal of plant physiology.

[43]  Remote Sensing and In Situ Measurements for Delineation and Assessment of Coastal Marshes and Their Constituent Species , 2009 .

[44]  R. Thomas,et al.  Causes of Salt Marsh Erosion in Galveston Bay, Texas , 2009 .

[45]  M. F. Gross,et al.  The use of airborne imaging spectrometer (AIS) data to differentiate marsh vegetation , 1986 .

[46]  A. Viña,et al.  Remote estimation of canopy chlorophyll content in crops , 2005 .

[47]  M. Kearney,et al.  The Effects of Tidal Inundation on the Reflectance Characteristics of Coastal Marsh Vegetation , 2009 .

[48]  G. Hill,et al.  Vegetation mapping of a tropical freshwater swamp in the Northern Territory, Australia: A comparison of aerial photography, Landsat TM and SPOT satellite imagery , 2001 .

[49]  David S. Page,et al.  Use of remote sensing to document changes in marsh vegetation following the Amoco Cadiz oil spill (Brittany, France, 1978) , 1995 .

[50]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[51]  Antoine Collin,et al.  Salt-marsh characterization, zonation assessment and mapping through a dual-wavelength LiDAR , 2010 .

[52]  Andrea Comerlati,et al.  Spatial organization and ecohydrological interactions in oxygen‐limited vegetation ecosystems , 2006 .

[53]  Thomas Gumbricht,et al.  Ecoregion classification in the Okavango Delta, Botswana from multitemporal remote sensing , 2005 .

[54]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[55]  Stuart E. Bunn,et al.  Assessing the seasonal dynamics of inundation, turbidity, and aquatic vegetation in the Australian wet–dry tropics using optical remote sensing , 2013 .

[56]  I. Mendelssohn,et al.  Long-term recovery of a Louisiana brackish marsh plant community from oil-spill impact: vegetation response and mitigating effects of marsh surface elevation. , 2000, Marine environmental research.

[57]  Accuracy Assessments of Airborne Hyperspectral Data for Mapping Opportunistic Plant Species in Freshwater Coastal Wetlands , 2004 .

[58]  John L. Gallagher,et al.  Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh , 1980 .

[59]  Francisco Artigas,et al.  Mapping Salt Marsh Vegetation by Integrating Hyperspectral and LiDAR Remote Sensing , 2009 .

[60]  William K. Michener,et al.  Detecting Wetland Change: A Rule-Based Approach Using NWI and SPOT-XS Data , 2000 .

[61]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[62]  William J. Mitsch,et al.  Salt marsh vegetation recovery at salt hay farm wetland restoration sites on Delaware Bay , 2005 .

[63]  W. Verstraeten,et al.  A near-infrared narrow-waveband ratio to determine Leaf Area Index in orchards , 2008 .

[64]  Gregory A. Carter,et al.  The use of hyperspectral remote sensing to assess vascular plant species richness on Horn Island, Mississippi , 2008 .