Incremental Sampling-Based Algorithms for a Class of Pursuit-Evasion Games

Pursuit-evasion games have been used for modeling various forms of conflict arising between two agents modeled as dynamical systems. Although analytical solutions of some simple pursuit-evasion games are known, most interesting instances can only be solved using numerical methods requiring significant offline computation. In this paper, a novel incremental sampling-based algorithm is presented to compute optimal open-loop solutions for the evader, assuming worst-case behavior for the pursuer. It is shown that the algorithm has probabilistic completeness and soundness guarantees. As opposed to many other numerical methods tailored to solve pursuit-evasion games, incremental sampling-based algorithms offer anytime properties, which allow their real-time implementations in online settings.

[1]  T. D. Parsons,et al.  Pursuit-evasion in a graph , 1978 .

[2]  Alexandre M. Bayen,et al.  A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.

[3]  Michael Farber,et al.  Topological complexity of collision free motion planning algorithms in the presence of multiple moving obstacles , 2006 .

[4]  Jonathan P. How,et al.  Real-Time Motion Planning With Applications to Autonomous Urban Driving , 2009, IEEE Transactions on Control Systems Technology.

[5]  Emilio Frazzoli,et al.  Optimal kinodynamic motion planning using incremental sampling-based methods , 2010, 49th IEEE Conference on Decision and Control (CDC).

[6]  G. Olsder New trends in dynamic games and applications , 1995 .

[7]  James J. Kuffner,et al.  Multipartite RRTs for Rapid Replanning in Dynamic Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[8]  Micah Adler,et al.  Randomized Pursuit-Evasion in Graphs , 2002, Combinatorics, Probability and Computing.

[9]  Daniel E. Koditschek,et al.  Topology and Robotics , 2007 .

[10]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[11]  J. Cruz,et al.  On the Stackelberg strategy in nonzero-sum games , 1973 .

[12]  Sampath Kannan,et al.  Randomized pursuit-evasion with limited visibility , 2004, SODA '04.

[13]  Thierry Fraichard,et al.  Safe motion planning in dynamic environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[15]  Branislav Bosanský,et al.  Transiting areas patrolled by a mobile adversary , 2010, Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games.

[16]  Micha Sharir,et al.  Motion Planning in the Presence of Moving Obstacles , 1985, FOCS.

[17]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[18]  G. Grimmett,et al.  Probability and random processes , 2002 .

[19]  T. Başar,et al.  Stochastic and differential games : theory and numerical methods , 1999 .

[20]  Sampath Kannan,et al.  Locating and Capturing an Evader in a Polygonal Environment , 2004, WAFR.

[21]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[22]  P. Varaiya,et al.  Differential games , 1971 .

[23]  H. J. Pesch,et al.  Complex differential games of pursuit-evasion type with state constraints, part 2: Numerical computation of optimal open-loop strategies , 1993 .

[24]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[25]  Masafumi Yamashita,et al.  Searching for a Mobile Intruder in a Polygonal Region , 1992, SIAM J. Comput..

[26]  L. Shampine,et al.  A collocation method for boundary value problems , 1972 .

[27]  S. Shankar Sastry,et al.  Roadmap Based Pursuit-Evasion and Collision Avoidance , 2005, Robotics: Science and Systems.

[28]  Wolfgang Maass,et al.  Motion planning among time dependent obstacles , 1988, Acta Informatica.

[29]  Mark H. Overmars,et al.  Planning the Shortest Safe Path Amidst Unpredictably Moving Obstacles , 2006, WAFR.

[30]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[31]  G. Swaminathan Robot Motion Planning , 2006 .

[32]  Swaminathan Natarajan Imprecise and Approximate Computation , 1995 .

[33]  Emilio Frazzoli,et al.  Incremental Sampling-based Algorithms for Optimal Motion Planning , 2010, Robotics: Science and Systems.

[34]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[35]  H. J. Pesch,et al.  Complex differential games of pursuit-evasion type with state constraints, part 1: Necessary conditions for optimal open-loop strategies , 1993 .

[36]  Hanan Samet,et al.  Planning a time-minimal motion among moving obstacles , 1993, Algorithmica.

[37]  H. J. Pesch,et al.  Three-Dimensional Air Combat: Numerical Solution of Complex Differential Games , 1995 .

[38]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[39]  T. Raivio,et al.  On Applied Nonlinear and Bilevel Programming or Pursuit-Evasion Games , 2001 .

[40]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[41]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[42]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[43]  Shlomo Zilberstein,et al.  Approximate Reasoning Using Anytime Algorithms , 1995 .

[44]  M. Falcone,et al.  Numerical Methods for Pursuit-Evasion Games via Viscosity Solutions , 1999 .

[45]  Martino Bardi,et al.  Stochastic and Differential Games , 1999 .

[46]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..