Analysis of fMRI Data

fMRI stands for “functional magnetic resonance imaging” and represents a noninvasive, indirect method for measuring neural activity over time. Such brain scans result in large, complex, and noisy data, which makes data analysis challenging. The first part of the chapter focuses on data preparation and visualization techniques. This is followed by standard univariate linear modeling approaches, for which some effort needs to go into the computation of the expected BOLD signal and the design matrix specification. After fitting the regression models, a huge multiple testing problem arises. A corresponding section focuses on the false discovery rate, Gaussian random fields, and permutation tests including cluster-based thresholding. The last few sections describe specific multivariate methods popular in fMRI: independent component analysis, representational similarity analysis, and connectivity analysis.

[1]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[2]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[3]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[4]  A. Ishai,et al.  Recollection- and Familiarity-Based Decisions Reflect Memory Strength , 2008, Frontiers in systems neuroscience.

[5]  Karsten Tabelow,et al.  Statistical Parametric Maps for Functional MRI Experiments in R: The Package fmri , 2011 .

[6]  Juan Manuel Contreras,et al.  Neural evidence that three dimensions organize mental state representation: Rationality, social impact, and valence , 2015, Proceedings of the National Academy of Sciences.

[7]  Mingzhou Ding,et al.  Is Granger Causality a Viable Technique for Analyzing fMRI Data? , 2013, PloS one.

[8]  Sandrine Dudoit,et al.  Multiple Testing Procedures: the multtest Package and Applications to Genomics , 2005 .

[9]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[10]  Gilles J. Guillemin,et al.  Expression of Tryptophan 2,3-Dioxygenase and Production of Kynurenine Pathway Metabolites in Triple Transgenic Mice and Human Alzheimer's Disease Brain , 2013, PloS one.

[11]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[12]  Anjali Krishnan,et al.  Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations , 2014, NeuroImage.

[13]  Hans Knutsson,et al.  Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates , 2016, Proceedings of the National Academy of Sciences.

[14]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[15]  Sophie Achard The Statistical Analysis of Functional MRI Data , 2008 .

[16]  Patrick Mair,et al.  Multidimensional Scaling Using Majorization: SMACOF in R , 2008 .

[17]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[18]  John Muschelli,et al.  brainR: Interactive 3 and 4D Images of High Resolution Neuroimage Data , 2014, R J..

[19]  Maarten Mennes,et al.  Massively Parallel Nonparametric Regression, With an Application to Developmental Brain Mapping , 2014, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[20]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[21]  Adelino R. Ferreira da Silva,et al.  cudaBayesreg: Parallel Implementation of a Bayesian Multilevel Model for fMRI Data Analysis , 2011 .

[22]  Jack L. Gallant,et al.  Encoding and decoding in fMRI , 2011, NeuroImage.

[23]  Henk A. L. Kiers,et al.  CAR: A MATLAB Package to Compute Correspondence Analysis with Rotations , 2009 .

[24]  J. Pekar,et al.  Analytic Programming with fMRI Data: A Quick-Start Guide for Statisticians Using R , 2014, PloS one.

[25]  Rainer Goebel,et al.  Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns , 2008, NeuroImage.

[26]  Thomas L. Griffiths,et al.  Supplementary Information for Natural Speech Reveals the Semantic Maps That Tile Human Cerebral Cortex , 2022 .

[27]  Vince D. Calhoun,et al.  A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data , 2009, NeuroImage.

[28]  E. Bullmore,et al.  Wavelets and functional magnetic resonance imaging of the human brain , 2004, NeuroImage.

[29]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[30]  F. Gregory Ashby,et al.  Statistical Analysis of fMRI Data , 2011 .

[31]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[32]  Bjorn Roelstraete,et al.  FIAR: An R Package for Analyzing Functional Integration in the Brain , 2011 .

[33]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[34]  Kurt Hornik,et al.  kernlab - An S4 Package for Kernel Methods in R , 2004 .

[35]  Michel Dojat,et al.  Temporal and Spatial Independent Component Analysis for fMRI Data Sets Embedded in the AnalyzeFMRI R Package , 2011 .

[36]  Thomas E. Nichols Multiple testing corrections, nonparametric methods, and random field theory , 2012, NeuroImage.