A Survey of Visual Traffic Surveillance Using Spatio-Temporal Analysis and Mining

The focus of this survey is on spatio-temporal data mining and database retrieval for visual traffic surveillance systems. In many traffic surveillance applications, such as incident detection, abnormal events detection, vehicle speed estimation, and traffic volume estimation, the data used for reasoning is really in the form of spatio-temporal data (e.g. vehicle trajectories). How to effectively analyze these spatio-temporal data to automatically find its inherent characteristics for different visual traffic surveillance applications has been of great interest. Examples of spatio-temporal patterns extracted from traffic surveillance videos include, but are not limited to, sudden stops, harsh turns, speeding, and collisions. To meet the different needs of various traffic surveillance applications, several application- or event- specific models have been proposed in the literature. This paper provides a survey of different models and data mining algorithms to cover state of the art in spatio-temporal modelling, spatio-temporal data mining, and spatio-temporal retrieval for traffic surveillance video databases. In addition, the database model issues and challenges for traffic surveillance videos are also discussed in this survey.

[1]  Jitendra Malik,et al.  A real-time computer vision system for measuring traffic parameters , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Christoph Busch,et al.  Wavelet Transform for Analyzing Fog Visibility , 1998, IEEE Intell. Syst..

[3]  Aura Ganz,et al.  RETRA: Web Based Resource Allocation Tool for Emergency Management , 2013, Int. J. E Health Medical Commun..

[4]  Wei Wu,et al.  A method of vehicle classification using models and neural networks , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[5]  Diego Alexander Tibaduiza Burgos,et al.  Emerging Design Solutions in Structural Health Monitoring Systems , 2015 .

[6]  Rita Cucchiara,et al.  Vehicle Detection under Day and Night Illumination , 1999, IIA/SOCO.

[7]  Asdrubal Garcia-Ortiz,et al.  Traffic incident detection: Sensors and algorithms , 1998 .

[8]  Kaan Ozbay,et al.  INCIDENT MANAGEMENT IN INTELLIGENT TRANSPORTATION SYSTEMS , 1999 .

[9]  Rangasami L. Kashyap,et al.  A Spatio-Temporal Semantic Model for Multimedia Database Systems and Multimedia Information Systems , 2001, IEEE Trans. Knowl. Data Eng..

[10]  Enea Mustafaraj,et al.  Selected Assessment and Retrofitting Application Techniques for Historical Unreinforced Masonry Buildings , 2015 .

[11]  Osama Masoud,et al.  A vision-based approach to collision prediction at traffic intersections , 2005, IEEE Transactions on Intelligent Transportation Systems.

[12]  Khashayar Khorasani,et al.  A neural-network appearance-based 3-D object recognition using independent component analysis , 2003, IEEE Trans. Neural Networks.

[13]  Jwp Redden IS TRAIN HORN NOISE A PROBLEM IN YOUR TOWN , 2005 .

[14]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[15]  Chengcui Zhang,et al.  Learning-based spatio-temporal vehicle tracking and indexing for transportation multimedia database systems , 2003, IEEE Trans. Intell. Transp. Syst..

[16]  Hans-Hellmut Nagel,et al.  Incremental recognition of traffic situations from video image sequences , 2000, Image Vis. Comput..

[17]  N. H. C. Yung,et al.  Vehicle-type identification through automated virtual loop assignment and block-based direction-biased motion estimation , 2000, IEEE Trans. Intell. Transp. Syst..

[18]  Shuming Tang,et al.  Traffic-incident detection-algorithm based on nonparametric regression , 2005, IEEE Transactions on Intelligent Transportation Systems.

[19]  Katsushi Ikeuchi,et al.  Traffic monitoring and accident detection at intersections , 2000, IEEE Trans. Intell. Transp. Syst..

[20]  R D Jacobson,et al.  IMAGE SENSING SYSTEM TECHNOLOGY ADVANCEMENT FOR ADAPTIVE TRAFFIC MANAGEMENT , 1996 .

[21]  F. Porikli,et al.  Traffic congestion estimation using HMM models without vehicle tracking , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[22]  Christiane Gresse von Wangenheim,et al.  Enhancing DotProject to Support Risk Management Aligned with PMBOK in the Context of SMEs , 2015, Int. J. Inf. Technol. Proj. Manag..

[23]  Christian Micheloni,et al.  ADVANCED VISUAL-BASED TRAFFIC MONITORING SYSTEMS FOR INCREASING SAFETY IN ROAD TRANSPORTATION , 2003 .

[24]  Victor Chang,et al.  A Case Study for Business Integration as a Service , 2013 .

[25]  Chengcui Zhang,et al.  Spatiotemporal vehicle tracking: the use of unsupervised learning-based segmentation and object tracking , 2005, IEEE Robotics Autom. Mag..

[26]  Aytül Erçil,et al.  Subspace based object recognition using Support Vector Machines , 2005, 2005 13th European Signal Processing Conference.

[27]  Antonio Borri,et al.  Strengthening of Historic Masonry Structures with Composite Materials , 2015 .

[28]  Dean A. Pomerleau,et al.  Visibility estimation from a moving vehicle using the RALPH vision system , 1997, Proceedings of Conference on Intelligent Transportation Systems.

[29]  Stuart J. Russell,et al.  Object Identification: A Bayesian Analysis with Application to Traffic Surveillance , 1998, Artif. Intell..

[30]  Chengcui Zhang,et al.  A Multi-camera Approach to Vehicle Tracking Based on Features , 2007, Ninth IEEE International Symposium on Multimedia Workshops (ISMW 2007).

[31]  Chengcui Zhang,et al.  Vehicle tracking from disparate views , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[32]  Gerardo M. Verderame,et al.  Seismic assessment via EC8 of modern heritage structures: Knowledge of the structure and analysis methodologies , 2015 .

[33]  Frédéric Chausse,et al.  Real-Time Vehicle Trajectory Supervision on the Highway , 1995, Int. J. Robotics Res..

[34]  Balbir S. Dhillon,et al.  The Integrative Time-Dependent Modeling of the Reliability and Failure of the Causes of Drivers' Error Leading to Road Accidents , 2013, Int. J. Strateg. Decis. Sci..

[35]  Panagiotis G. Asteris,et al.  Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures , 2015 .

[36]  Sankaran Mahadevan,et al.  Statistical Approach to Structural Damage Diagnosis under Uncertainty , 2015 .

[37]  Julio Flórez-López,et al.  Fracture and Damage Mechanics for Structural Engineering of Frames: State-of-the-Art Industrial Applications , 2014 .

[38]  Fatemeh Daneshfar,et al.  A New Design of Intelligent Traffic Signal Control , 2013, Int. J. Fuzzy Syst. Appl..

[39]  Chengcui Zhang,et al.  A Spatio-Temporal Database Model on Transportation Surveillance Videos , 2006, STDBM.

[40]  Yo-Sung Ho,et al.  Content-based event retrieval using semantic scene interpretation for automated traffic surveillance , 2001, IEEE Trans. Intell. Transp. Syst..

[41]  Gérard G. Medioni,et al.  Detecting and tracking moving objects for video surveillance , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[42]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Shrinivas J. Pundlik,et al.  Vehicle segmentation and tracking from a low-angle off-axis camera , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[44]  Goh Bee Hua Implementing IT Business Strategy in the Construction Industry , 2013 .

[45]  M. Kilger,et al.  A shadow handler in a video-based real-time traffic monitoring system , 1992, [1992] Proceedings IEEE Workshop on Applications of Computer Vision.

[46]  W. Eric L. Grimson,et al.  Using adaptive tracking to classify and monitor activities in a site , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[47]  Osama Masoud,et al.  Computer vision algorithms for intersection monitoring , 2003, IEEE Trans. Intell. Transp. Syst..

[48]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[49]  Tieniu Tan,et al.  Semantic-based traffic video retrieval using activity pattern analysis , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[50]  T. Nakamura,et al.  Methods of traffic flow measurement using spatio-temporal image , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[51]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[52]  Scott A. Brandt,et al.  Visual tracking for intelligent vehicle-highway systems , 1996 .

[53]  Daniel J. Dailey,et al.  An algorithm to estimate mean traffic speed using uncalibrated cameras , 2000, IEEE Trans. Intell. Transp. Syst..

[54]  Kira Kastell Seamless Communication to Mobile Devices in Vehicular Wireless Networks , 2013 .

[55]  Chengcui Zhang,et al.  1 Spatio-Temporal Vehicle Tracking Using Unsupervised Learning-Based Segmentation and Object Tracking , 2015 .

[56]  Arif Ghafoor,et al.  Object-oriented conceptual modeling of video data , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[57]  Osama Masoud,et al.  Detection and classification of vehicles , 2002, IEEE Trans. Intell. Transp. Syst..

[58]  Bo Yang,et al.  VISATRAM: a real-time vision system for automatic traffic monitoring , 2000, Image Vis. Comput..

[59]  L. Kouris,et al.  Numerical Investigation and Empirical Seismic Vulnerability Assessment of Timber-Framed Masonry Buildings , 2015 .

[60]  Jitendra Malik,et al.  Automatic Symbolic Traffic Scene Analysis Using Belief Networks , 1994, AAAI.

[61]  Tieniu Tan,et al.  3-D model-based vehicle tracking , 2005, IEEE Transactions on Image Processing.

[62]  G. Reeke Marvin Minsky, The Society of Mind , 1991, Artif. Intell..

[63]  Chengcui Zhang,et al.  An Interactive Semantic Video Mining and Retrieval Platform--Application in Transportation Surveillance Video for Incident Detection , 2006, Sixth International Conference on Data Mining (ICDM'06).

[64]  Anthony G. Cohn,et al.  Constructing qualitative event models automatically from video input , 2000, Image Vis. Comput..

[65]  Lei Chen,et al.  Modeling of video objects in a video databases , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[66]  Shaogang Gong,et al.  Visual Surveillance in a Dynamic and Uncertain World , 1995, Artif. Intell..

[67]  Nicolas Hautière,et al.  Estimation of the Visibility Distance by Stereovision: a Generic Approach , 2005, MVA.

[68]  Stuart Harvey Rubin,et al.  A Human-Centered Multiple Instance Learning Framework for Semantic Video Retrieval , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[69]  Liborio Cavaleri,et al.  Agrigento Cathedral: Experimental Campaign and Study of Damage Evolution Addressed to the Assessment of the Collapse Risk , 2015 .

[70]  Vijayan Sugumaran,et al.  Concepts, Methodologies, Tools, and Applications , 2007 .

[71]  Jeff Fortuna,et al.  A comparison of PCA and ICA for object recognition under varying illumination , 2002, Object recognition supported by user interaction for service robots.

[72]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[73]  Larry S. Davis,et al.  W/sup 4/: Who? When? Where? What? A real time system for detecting and tracking people , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[74]  Tieniu Tan,et al.  Traffic accident prediction using 3-D model-based vehicle tracking , 2004, IEEE Transactions on Vehicular Technology.

[75]  Paola Mello,et al.  Image analysis and rule-based reasoning for a traffic monitoring system , 2000, IEEE Trans. Intell. Transp. Syst..

[76]  Wei-bang Chen,et al.  A PCA-Based Vehicle Classification Framework , 2006, 22nd International Conference on Data Engineering Workshops (ICDEW'06).

[77]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).