Calibration and real-time processing of time-of-flight range data

The presented thesis addresses a new technology for active range estimation, so-called time-of-flight (TOF) cameras. Based on the runtime principle, time-of-flight cameras allow the parallel acquisition of multiple distance information and thus enable, in contrast to other approaches, the acquisition of an entire scene in real-time. Consequently, TOF cameras are most suitable for many real-time systems in the area of automatization and interaction, where they are used for, i.a., object or gesture recognition. Due to their novelty, however, the accuracy of time-of-flight senors has been studied barely up to the present. Experiments in the context of presented thesis revealed error sources whose characteristics result in distance deviations of several centimeters. Those error sources therefore have significant impact onto the accuracy of acquired distance information and the results of vision systems as well. In addition, current TOF cameras are of low resolution compared to other range sensing approaches. Although this circumstance does not represent a real error source, it might have negative influence on the accuracy of automatization algorithms and therefore gives reasons for appropriate pre-processing of the acquired information. Dealing with basic research, the presented work covers the investigation of the accuracy of current camera models as well as the basic processing steps that are necessary for the enhancement of range images regarding further processing steps. In the context of camera accuracy, the thesis primary focuses on the systematical error characteristics and discusses the design of phenomenological calibration models covering demodulation- as well as intensity-related deviations. Furthermore, it deals with the compensation of TOF-specific motion artifacts and describes a compensation approach, which is based on optical motion estimation as well as an theoretical axial motion model. In the context of data processing, the presented thesis deals with the reduction of noise effects as well as the algorithmic refinement of distance information. Regarding distance refinement, two approaches are discussed: explicitly surface approximation using Moving Least Square surfaces as well as edge preservative data upscaling in image space. Furthermore, it covers the fusion of range images with supplementary information as provided by additional imaging sensors, in order to provide multi-modal data for sophisticated vision systems. Die vorliegende Arbeit befasst sich mit einer neuartigen, kostengunstigen Technologie zur aktiven Entfernungsmessung, sogenannten Time-of-Flight (TOF) Kameras. Basierend auf dem Laufzeit-Prinzip, erlauben diese die parallele Aufnahme mehrerer Tiefeninformationen und ermoglichen somit, im Gegensatz zu bisherigen Technologien, die Akquisition einer kompletten Szene in Echtzeit. Infolgedessen, eignen sich TOF Kameras besonders gut fur vielerlei Echtzeit-Systeme aus den Bereichen der Automatisierung und Interaktion, und finden dort ihren Einsatz u.a. zur Objekt- und Gestenerkennung. Aufgrund ihrer Neuheit, wurde die Genauigkeit von Time-of-Flight Kameras jedoch bisher kaum untersucht. Durchgefuhrte Untersuchungen im Rahmen der Arbeit haben Fehlerquellen aufgezeigt, die in ihrer Auspragung zu signifikanten Abweichungen in den Tiefeninformationen von mehreren Zentimetern fuhren. Diese haben somit relevante Auswirkung auf die Ergebnisse von Vision-Systemen. Des Weiteren weisen aktuelle TOF Kameras, im Vergleich zu anderen Verfahren zur Entfernungsmessung, eine geringere Bildauflosung auf. Auch wenn dieser Sachverhalt im eigentlichen Sinn keine Fehlerquelle darstellt, kann er doch entscheidenden Einfluss auf die Genauigkeit von Automatisierungs-Algorithmen haben und rechtfertigt somit die algorithmische Verfeinerung von Tiefeninformationen. Im Rahmen von Grundlagenforschung, umfasst die Ausarbeitung sowohl die Untersuchung potentieller Fehlerquellen von TOF Kameras und deren Korrektur, als auch die grundlegenden Vorverarbeitungsschritte, die notig sind um aufgenommene Tiefeninformationen fur die weitere Verarbeitung zu verbessern. Im Kontext der Messgenauigkeit, werden primar die Charakteristiken systematisch auftretender Messfehler, sowie der Entwurf entsprechender, phanomenologischer Korrekturmodelle fur Demodulations- und Intensitats-abhangiger Abweichungen betrachtet. Daruber hinaus wird die Reduktion TOF Kamera spezifischer Bewegungsartefakte innerhalb dynamischer Szenen, basierend auf einer optischen Bewegungsschatzungen, sowie eines theoretischen axialen Bewegungsmodels behandelt. Im Bereich der Datenverarbeitung behandelt die Ausarbeitung zunachst die Reduktion von Rauscheinflussen sowie die algorithmischen Verfeinerung von Tiefeninformationen. In diesem Zusammenhang werden zwei Verfahren zur Tiefenverfeinerung erortert: explizite Oberflachen-Approximationen mittels Moving Least Square Oberflachen und kantenerhaltendes Upsampling im Bildraum. Ferner befasst sich die Ausarbeitung mit der grundlegenden Fragestellung zur Fusion von Tiefenbildern mit weiteren Informationen zusatzlicher, bildgebender Sensoren zur Erstellung multi-modaler Daten.

[1]  Andreas Kolb,et al.  Compensation of Motion Artifacts for Time-of-Flight Cameras , 2009, Dyn3D.

[2]  Paul R. Cohen,et al.  Camera Calibration with Distortion Models and Accuracy Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Kevin L. Moore,et al.  Rational Radial Distortion Models of Camera Lenses with Analytical Solution for Distortion Correction , 2004, Int. J. Inf. Acquis..

[4]  Jörg Krüger,et al.  Incident light related distance error study and calibration of the PMD-range imaging camera , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[5]  Nina Amenta,et al.  The Domain of a Point Set Surface , 2004, PBG.

[6]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[7]  Robert Lange,et al.  3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology , 2006 .

[8]  Andreas Kolb,et al.  New insights into the calibration of ToF-sensors , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[9]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[10]  Hans-Peter Seidel,et al.  Robust filtering of noisy scattered point data , 2005, Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005..

[11]  Andreas Kolb,et al.  Lateral and Depth Calibration of PMD-Distance Sensors , 2006, ISVC.

[12]  Gerd Hirzinger,et al.  Extrinsic and depth calibration of ToF-cameras , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Tamal K. Dey,et al.  An Adaptive MLS Surface for Reconstruction with Guarantees , 2022 .

[14]  Jochen Frey,et al.  Robust 3 D Measurement with PMD Sensors , 2005 .

[15]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[16]  Xuming Luan,et al.  Experimental investigation of photonic mixer device and development of TOF 3D ranging Ssystems based on PMD technology , 2006 .

[17]  Marc Alexa,et al.  Approximating and Intersecting Surfaces from Points , 2003, Symposium on Geometry Processing.

[18]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[19]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[20]  Timo Schairer,et al.  Robust non-local denoising of colored depth data , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[21]  Joachim Hornegger,et al.  Standardization of intensity-values acquired by Time-of-Flight-cameras , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[22]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[23]  Bernd Jähne,et al.  Theoretical and experimental error analysis of continuous-wave time-of-flight range cameras , 2009, Optical Engineering.

[24]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[25]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[26]  Nicholas Ayache,et al.  Efficient registration of stereo images by matching graph descriptions of edge segments , 1987, International Journal of Computer Vision.

[27]  Thomas Martinetz,et al.  Shading constraint improves accuracy of time-of-flight measurements , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[28]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[29]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[30]  Yoshiaki Shirai,et al.  Three-Dimensional Computer Vision , 1987, Symbolic Computation.

[31]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[32]  Andreas Kolb,et al.  Real-time simulation of time-of-flight sensors , 2009, Simul. Model. Pract. Theory.

[33]  Holger H. Rapp,et al.  Experimental and Theoretical Investigation of Correlating TOF-Camera Systems , 2007 .

[34]  George Drettakis,et al.  Perspective shadow maps , 2002, ACM Trans. Graph..

[35]  Richard Kowarschik,et al.  High-resolution defect detection and noise reduction using wavelet methods for surface measurement , 2000 .

[36]  D. Cohen-Or,et al.  Robust moving least-squares fitting with sharp features , 2005, ACM Trans. Graph..

[37]  Dean Brown,et al.  Decentering distortion of lenses , 1966 .

[38]  Joachim Weickert,et al.  A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.

[39]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[41]  T. Oggier,et al.  SwissRanger SR 3000 and First Experiences based on Miniaturized 3 D-TOF Cameras , 1968 .

[42]  Joachim Weickert,et al.  Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods , 2005, International Journal of Computer Vision.

[43]  Hans-Peter Seidel,et al.  An Image-Based Model for Realistic Lens Systems in Interactive Computer Graphics , 1997, Graphics Interface.

[44]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .

[45]  Reinhard Koch,et al.  Calibration of focal length and 3D pose based on the reflectance and depth image of a planar object , 2008, Int. J. Intell. Syst. Technol. Appl..

[46]  Carl-Fredrik Westin,et al.  Normalized Convolution : Technique for Filtering Incomplete and Uncertain Data , 1993 .

[47]  Janne Heikkilä,et al.  Geometric Camera Calibration Using Circular Control Points , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Ravi Krishna Kolluri,et al.  Provably good moving least squares , 2005, SIGGRAPH Courses.

[49]  Richard K. Beatson,et al.  Smooth surface reconstruction from noisy range data , 2003, GRAPHITE '03.

[50]  David Salesin,et al.  Rendering antialiased shadows with depth maps , 1987, SIGGRAPH.

[51]  Lance Williams,et al.  Pyramidal parametrics , 1983, SIGGRAPH.

[52]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[53]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Mark Segal,et al.  Fast shadows and lighting effects using texture mapping , 1992, SIGGRAPH.

[55]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[56]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Timo Kahlmann,et al.  CALIBRATION FOR INCREASED ACCURACY OF THE RANGE IMAGING CAMERA SWISSRANGER , 2006 .

[58]  H. Aanaes,et al.  Environmental Effects on Measurement Uncertainties of Time-of-Flight Cameras , 2007, 2007 International Symposium on Signals, Circuits and Systems.

[59]  Nina Amenta,et al.  Defining point-set surfaces , 2004, ACM Trans. Graph..

[60]  Songde Ma,et al.  Implicit and Explicit Camera Calibration: Theory and Experiments , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Reinhard Koch,et al.  Time‐of‐Flight Cameras in Computer Graphics , 2010, Comput. Graph. Forum.

[62]  Wolfgang Förstner,et al.  PHOTOGRAMMETRIC STANDARD METHODS AND DIGITAL IMAGE MATCHING TECHNIQUES FOR HIGH PRECISION SURFACE MEASUREMENTS , 1986 .

[63]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[64]  Wolfgang Straßer,et al.  Patch-Graph Reconstruction for Piecewise Smooth Surfaces , 2008, VMV.

[65]  Markus Hadwiger,et al.  Fast Third-Order Texture Filtering , 2005 .

[66]  K. Hartmann,et al.  Data-Fusion of PMD-Based Distance-Information and High-Resolution RGB-Images , 2007, 2007 International Symposium on Signals, Circuits and Systems.

[67]  Reinhard Klein,et al.  Completion and Reconstruction with Primitive Shapes , 2009, Comput. Graph. Forum.

[68]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[69]  Arun N. Netravali,et al.  Reconstruction filters in computer-graphics , 1988, SIGGRAPH.

[70]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[71]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[72]  Andreas Kolb,et al.  Calibration of the intensity-related distance error of the PMD TOF-camera , 2007, SPIE Optics East.

[73]  Klaus-Dieter Kuhnert,et al.  Fusion of Stereo-Camera and PMD-Camera Data for Real-Time Suited Precise 3D Environment Reconstruction , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[74]  Reinhard Koch,et al.  Time-of-Flight sensor calibration for accurate range sensing , 2010, Comput. Vis. Image Underst..

[75]  Thomas Ertl,et al.  Hardware-accelerated Extraction and Rendering of Point Set Surfaces , 2006, EuroVis.

[76]  Martin Kraus,et al.  GPU-Based Edge-Directed Image Interpolation , 2007, SCIA.

[77]  Jens H. Krüger,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.

[78]  Ralf Reulke,et al.  Combination of distance data with high resolution images , 2006 .

[79]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[80]  Sebastian Thrun,et al.  An Application of Markov Random Fields to Range Sensing , 2005, NIPS.

[81]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[82]  Timo Kohlberger,et al.  A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods , 2006, International Journal of Computer Vision.

[83]  Ruigang Yang,et al.  Spatial-Depth Super Resolution for Range Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[84]  A. Adamson,et al.  Ray tracing point set surfaces , 2003, 2003 Shape Modeling International..

[85]  Andreas Kolb,et al.  Parallel Mesh Clustering , 2009, EGPGV@Eurographics.

[86]  Daniel Cohen-Or,et al.  Parameterization-free projection for geometry reconstruction , 2007, ACM Trans. Graph..

[87]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[88]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[89]  Markus H. Gross,et al.  Feature Preserving Point Set Surfaces based on Non‐Linear Kernel Regression , 2009, Comput. Graph. Forum.