On the strong maximum principle for second order nonlinear parabolic integro-differential equations
暂无分享,去创建一个
[1] Hitoshi Ishii,et al. The maximum principle for semicontinuous functions , 1990, Differential and Integral Equations.
[2] Martino Bardi,et al. Propagation of Maxima and Strong Maximum Principle for Viscosity Solutions of Degenerate Elliptic Equations , 2000 .
[3] E. Jakobsen,et al. CONTINUOUS DEPENDENCE ESTIMATES FOR VISCOSITY SOLUTIONS OF INTEGRO-PDES , 2005 .
[4] Anna Lisa Amadori,et al. Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach , 2003, Differential and Integral Equations.
[5] G. Barles,et al. Second-order elliptic integro-differential equations: viscosity solutions' theory revisited , 2007, math/0702263.
[6] G. Barles,et al. H\^older continuity of solutions of second-order non-linear elliptic integro-differential equations , 2010, 1009.0685.
[7] Kenneth H. Karlsen,et al. Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach , 2001, Finance Stochastics.
[8] Francesca Da Lio,et al. REMARKS ON THE STRONG MAXIMUM PRINCIPLE FOR VISCOSITY SOLUTIONS TO FULLY NONLINEAR PARABOLIC EQUATIONS , 2004 .
[9] Martino Bardi,et al. Propagation of maxima and Strong Maximum Principle for viscosity solutions of degenerate elliptic equations. II: Concave operators , 2003 .
[10] H. Soner. Optimal control with state-space constraint I , 1986 .
[11] W. Woyczynski. Lévy Processes in the Physical Sciences , 2001 .
[12] M. Arisawa,et al. A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations , 2006 .
[13] Huy En Pham. Optimal Stopping of Controlled Jump Diiusion Processes: a Viscosity Solution Approach , 1998 .
[14] P. Lions,et al. Viscosity solutions of fully nonlinear second-order elliptic partial differential equations , 1990 .
[15] G. Barles,et al. Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations , 2011 .
[16] L. Nirenberg. A strong maximum principle for parabolic equations , 1953 .
[17] J. Coville. Remarks on the strong maximum principle for nonlocal operators , 2008 .
[18] Sayah Awatif. Equqtions D'Hamilton-Jacobi Du Premier Ordre Avec Termes Intégro-Différentiels: Partie II: Unicité Des Solutions De Viscosité , 1991 .
[19] E. Jakobsen,et al. A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations , 2006 .
[20] Sayah Awatif,et al. Equqtions D'Hamilton-Jacobi Du Premier Ordre Avec Termes Intégro-Différentiels , 2007 .
[21] H. Ishii. On uniqueness and existence of viscosity solutions of fully nonlinear second‐order elliptic PDE's , 1989 .
[22] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .
[23] R. Jensen. The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations , 1988 .
[24] C. Imbert. A non-local regularization of first order Hamilton–Jacobi equations , 2005 .
[25] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.