Computational Neuroethology: A Call to Action

[1]  Kristin Branson,et al.  An automatic behavior recognition system classifies animal behaviors using movements and their temporal context , 2019, Journal of Neuroscience Methods.

[2]  Anne E. Urai,et al.  Harnessing behavioral diversity to understand circuits for cognition , 2019, 1906.09622.

[3]  Primoz Ravbar,et al.  Drosophila melanogaster grooming possesses syntax with distinct rules at different temporal scales , 2019, PLoS Comput. Biol..

[4]  S. R. Datta Q&A: Understanding the composition of behavior , 2019, BMC Biology.

[5]  Jonathan W. Pillow,et al.  Unsupervised identification of the internal states that shape natural behavior , 2019, Nature Neuroscience.

[6]  Pascal Fua,et al.  DeepFly3D: A deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila , 2019, bioRxiv.

[7]  Anton Sirota,et al.  Ratcave: A 3D graphics python package for cognitive psychology experiments , 2019, Behavior research methods.

[8]  Jacob M. Graving,et al.  DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning , 2019, bioRxiv.

[9]  Iain D. Couzin,et al.  Fast and robust animal pose estimation , 2019 .

[10]  Kevin R Coffey,et al.  DeepSqueak: a deep learning-based system for detection and analysis of ultrasonic vocalizations , 2019, Neuropsychopharmacology.

[11]  Brent Doiron,et al.  Bridging large-scale neuronal recordings and large-scale network models using dimensionality reduction , 2018, Current Opinion in Neurobiology.

[12]  Megan R. Carey,et al.  Spatial and Temporal Locomotor Learning in Mouse Cerebellum , 2018, Neuron.

[13]  Nicholas A. Steinmetz,et al.  Spontaneous behaviors drive multidimensional, brainwide activity , 2019, Science.

[14]  William Bialek,et al.  Searching for collective behavior in a small brain. , 2018, Physical review. E.

[15]  David J. Anderson,et al.  A Brain Module for Scalable Control of Complex, Multi-motor Threat Displays , 2018, Neuron.

[16]  Matthias Bethge,et al.  Using DeepLabCut for 3D markerless pose estimation across species and behaviors , 2018, Nature Protocols.

[17]  Ashley N. Linder,et al.  Predicting natural behavior from whole-brain neural dynamics , 2018, bioRxiv.

[18]  Maneesh Sahani,et al.  A Head-Mounted Camera System Integrates Detailed Behavioral Monitoring with Multichannel Electrophysiology in Freely Moving Mice , 2018, Neuron.

[19]  J. Beck,et al.  Statistical structure of locomotion and its modulation by odors , 2018, bioRxiv.

[20]  Joshua W Shaevitz,et al.  Temporal processing and context dependency in Caenorhabditis elegans response to mechanosensation , 2018, eLife.

[21]  Scott W. Linderman,et al.  The Striatum Organizes 3D Behavior via Moment-to-Moment Action Selection , 2018, Cell.

[22]  Mikhail Kislin,et al.  Fast animal pose estimation using deep neural networks , 2018, Nature Methods.

[23]  Matthew T. Kaufman,et al.  Movement-related activity dominates cortex during sensory-guided decision making , 2018, bioRxiv.

[24]  Bartul Mimica,et al.  Efficient cortical coding of 3D posture in freely behaving rats , 2018, Science.

[25]  Matthias Bethge,et al.  DeepLabCut: markerless pose estimation of user-defined body parts with deep learning , 2018, Nature Neuroscience.

[26]  Jeffrey C Erlich,et al.  Decision-making behaviors: weighing ethology, complexity, and sensorimotor compatibility , 2018, Current Opinion in Neurobiology.

[27]  A. Leifer,et al.  Temporal processing and context dependency in C. elegans mechanosensation , 2018, 1803.04085.

[28]  Benjamin L. de Bivort,et al.  Ethology as a physical science , 2018, Nature Physics.

[29]  Gordon J. Berman,et al.  Measuring behavior across scales , 2017, BMC Biology.

[30]  Jan Clemens,et al.  Discovery of a New Song Mode in Drosophila Reveals Hidden Structure in the Sensory and Neural Drivers of Behavior , 2018, Current Biology.

[31]  Gordon J. Berman,et al.  Optogenetic dissection of descending behavioral control in Drosophila , 2017, bioRxiv.

[32]  Vasilis Ntziachristos,et al.  NeuBtracker—imaging neurobehavioral dynamics in freely behaving fish , 2017, Nature Methods.

[33]  Dal Hyung Kim,et al.  Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish , 2017, Nature Methods.

[34]  David J. Anderson,et al.  A Circuit Node that Integrates Convergent Input from Neuromodulatory and Social Behavior-Promoting Neurons to Control Aggression in Drosophila , 2017, Neuron.

[35]  L. Paninski,et al.  The Spatiotemporal Organization of the Striatum Encodes Action Space , 2017, Neuron.

[36]  David J. Foster Replay Comes of Age. , 2017, Annual review of neuroscience.

[37]  Thomas R Clandinin,et al.  Dynamic structure of locomotor behavior in walking fruit flies , 2017, eLife.

[38]  Michael B. Reiser,et al.  Mapping the Neural Substrates of Behavior , 2017, Cell.

[39]  Mohamed S. Emara,et al.  Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber , 2017, Nature Neuroscience.

[40]  Shrikanth Narayanan,et al.  MUPET—Mouse Ultrasonic Profile ExTraction: A Signal Processing Tool for Rapid and Unsupervised Analysis of Ultrasonic Vocalizations , 2017, Neuron.

[41]  Zeguan Wang,et al.  Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio) , 2017, bioRxiv.

[42]  Mehrdad Jazayeri,et al.  Navigating the Neural Space in Search of the Neural Code , 2017, Neuron.

[43]  P. Latham,et al.  Cracking the Neural Code for Sensory Perception by Combining Statistics, Intervention, and Behavior , 2017, Neuron.

[44]  M. A. MacIver,et al.  Neuroscience Needs Behavior: Correcting a Reductionist Bias , 2017, Neuron.

[45]  Jan Clemens,et al.  The use of computational modeling to link sensory processing with behavior in Drosophila , 2017 .

[46]  Ugne Klibaite,et al.  An unsupervised method for quantifying the behavior of paired animals , 2016, Physical biology.

[47]  Casey M. Schneider-Mizell,et al.  Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila , 2016, Cell.

[48]  Adrienne L. Fairhall,et al.  Dimensionality reduction in neuroscience , 2016, Current Biology.

[49]  Yasser Roudi,et al.  Ten Years of Grid Cells. , 2016, Annual review of neuroscience.

[50]  C. Harvey,et al.  Neuroscience: Virtual reality explored , 2016, Nature.

[51]  Joshua W. Shaevitz,et al.  Predictability and hierarchy in Drosophila behavior , 2016, Proceedings of the National Academy of Sciences.

[52]  Jeremy G Todd,et al.  Systematic exploration of unsupervised methods for mapping behavior , 2016, bioRxiv.

[53]  Ugne Klibaite,et al.  The PSI–U1 snRNP interaction regulates male mating behavior in Drosophila , 2016, Proceedings of the National Academy of Sciences.

[54]  Ryan P. Adams,et al.  Composing graphical models with neural networks for structured representations and fast inference , 2016, NIPS.

[55]  William S Ryu,et al.  Resolving coiled shapes reveals new reorientation behaviors in C. elegans , 2016, eLife.

[56]  Timothy W. Dunn,et al.  Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion , 2016, eLife.

[57]  Konrad P. Körding,et al.  The Development and Analysis of Integrated Neuroscience Data , 2016, Front. Comput. Neurosci..

[58]  David J. Anderson,et al.  P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila , 2015, eLife.

[59]  Mason Klein,et al.  Pan-neuronal imaging in roaming Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[60]  Ryan P. Adams,et al.  Mapping Sub-Second Structure in Mouse Behavior , 2015, Neuron.

[61]  Kristin Branson,et al.  Cortex commands the performance of skilled movement , 2015, eLife.

[62]  Theodore H. Lindsay,et al.  Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans , 2015, Cell.

[63]  João Fayad,et al.  A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice , 2015, eLife.

[64]  Connecting Neural Codes with Behavior in the Auditory System of Drosophila , 2015, Neuron.

[65]  Julie H. Simpson,et al.  A Subset of Serotonergic Neurons Evokes Hunger in Adult Drosophila , 2015, Current Biology.

[66]  David J. Anderson,et al.  Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning , 2015, Proceedings of the National Academy of Sciences.

[67]  R. Calabrese In search of lost scent , 2015, eLife.

[68]  Natalie M Bernat,et al.  Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration , 2015, eLife.

[69]  Parvez Ahammad,et al.  Dynamical feature extraction at the sensory periphery guides chemotaxis , 2015, eLife.

[70]  Mason Klein,et al.  Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics , 2015, bioRxiv.

[71]  André E. X. Brown,et al.  Changes in Postural Syntax Characterize Sensory Modulation and Natural Variation of C. elegans Locomotion , 2015, bioRxiv.

[72]  J. Macke,et al.  Neural population coding: combining insights from microscopic and mass signals , 2015, Trends in Cognitive Sciences.

[73]  Joshua W Shaevitz,et al.  Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[74]  Byron M. Yu,et al.  Dimensionality reduction for large-scale neural recordings , 2014, Nature Neuroscience.

[75]  David J. Anderson,et al.  Toward a Science of Computational Ethology , 2014, Neuron.

[76]  Joseph J. Paton,et al.  Big behavioral data: psychology, ethology and the foundations of neuroscience , 2014, Nature Neuroscience.

[77]  R. Kerr,et al.  Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning , 2014, Science.

[78]  Violeta Medan,et al.  The Mauthner-cell circuit of fish as a model system for startle plasticity , 2014, Journal of Physiology-Paris.

[79]  E. Kandel,et al.  The Molecular and Systems Biology of Memory , 2014, Cell.

[80]  Yi Deng,et al.  Dynamic sensory cues shape song structure in Drosophila , 2014, Nature.

[81]  J. O’Keefe,et al.  Space in the brain: how the hippocampal formation supports spatial cognition , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[82]  Pietro Perona,et al.  Tachykinin-Expressing Neurons Control Male-Specific Aggressive Arousal in Drosophila , 2014, Cell.

[83]  William Bialek,et al.  Mapping the stereotyped behaviour of freely moving fruit flies , 2013, Journal of The Royal Society Interface.

[84]  Brianne A. Kent,et al.  The touchscreen operant platform for assessing executive function in rats and mice , 2013, Nature Protocols.

[85]  P. Perona,et al.  utomated multi-day tracking of marked mice for the analysis of ocial behaviour , 2013 .

[86]  Aravinthan D. T. Samuel,et al.  Sensorimotor structure of Drosophila larva phototaxis , 2013, Proceedings of the National Academy of Sciences.

[87]  R. Kerr,et al.  High-Throughput Analysis of Stimulus-Evoked Behaviors in Drosophila Larva Reveals Multiple Modality-Specific Escape Strategies , 2013, PloS one.

[88]  Timothy J. Gardner,et al.  Long-range Order in Canary Song , 2013, PLoS Comput. Biol..

[89]  R. Mann,et al.  Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster , 2013, eLife.

[90]  Kristin Branson,et al.  JAABA: interactive machine learning for automatic annotation of animal behavior , 2013, Nature Methods.

[91]  Jamey S. Kain,et al.  Leg-tracking and automated behavioural classification in Drosophila , 2012, Nature Communications.

[92]  Laura J. Grundy,et al.  A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion , 2012, Proceedings of the National Academy of Sciences.

[93]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[94]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[95]  Drew N. Robson,et al.  Brain-wide neuronal dynamics during motor adaptation in zebrafish , 2012, Nature.

[96]  Matthew T. Kaufman,et al.  Neural population dynamics during reaching , 2012, Nature.

[97]  Aravinthan D. T. Samuel,et al.  Controlling airborne cues to study small animal navigation , 2012, Nature Methods.

[98]  Georgios Petrou,et al.  Detailed tracking of body and leg movements of a freely walking female cricket during phonotaxis , 2012, Journal of Neuroscience Methods.

[99]  John P. Cunningham,et al.  Neural population dynamics during , 2012 .

[100]  Salil S. Bidaye,et al.  Neuronal Control of Drosophila Courtship Song , 2011, Neuron.

[101]  Eduardo F. Morales,et al.  An Introduction to Reinforcement Learning , 2011 .

[102]  Roy E. Ritzmann,et al.  Computer-Assisted 3D Kinematic Analysis of All Leg Joints in Walking Insects , 2010, PloS one.

[103]  Thomas Serre,et al.  Automated home-cage behavioural phenotyping of mice. , 2010, Nature communications.

[104]  Michael H. Dickinson,et al.  Multi-camera real-time three-dimensional tracking of multiple flying animals , 2010, Journal of The Royal Society Interface.

[105]  Jose M Carmena,et al.  Investigating neural correlates of behavior in freely behaving rodents using inertial sensors. , 2010, Journal of neurophysiology.

[106]  Luc Van Gool,et al.  Exploiting simple hierarchies for unsupervised human behavior analysis , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[107]  Pietro Perona,et al.  Optimal reward harvesting in complex perceptual environments , 2010, Proceedings of the National Academy of Sciences.

[108]  Greg J. Stephens,et al.  From Modes to Movement in the Behavior of Caenorhabditis elegans , 2009, PloS one.

[109]  N. A. Croll Components and patterns in the behaviour of the nematode Caenorhabditis elegans , 2009 .

[110]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[111]  Pietro Perona,et al.  Automated monitoring and analysis of social behavior in Drosophila , 2009, Nature Methods.

[112]  Heng Tao Shen,et al.  Dimensionality Reduction , 2009, Encyclopedia of Database Systems.

[113]  J. Crawley,et al.  Behavioral Phenotyping Strategies for Mutant Mice , 2008, Neuron.

[114]  Greg J. Stephens,et al.  Dimensionality and Dynamics in the Behavior of C. elegans , 2007, PLoS Comput. Biol..

[115]  Devanand S. Manoli,et al.  Blueprints for behavior: genetic specification of neural circuitry for innate behaviors , 2006, Trends in Neurosciences.

[116]  N. Tinbergen On aims and methods of Ethology , 2010 .

[117]  Tamar Flash,et al.  Motor primitives in vertebrates and invertebrates , 2005, Current Opinion in Neurobiology.

[118]  Jakob Verbeek,et al.  Rodent behavior annotation from video , 2005 .

[119]  Sean R Eddy,et al.  What is a hidden Markov model? , 2004, Nature Biotechnology.

[120]  R. Strauss,et al.  Coordination of legs during straight walking and turning in Drosophila melanogaster , 1990, Journal of Comparative Physiology A.

[121]  Werner Reichardt,et al.  Figure-ground discrimination by relative movement in the visual system of the fly , 2004, Biological Cybernetics.

[122]  J. Crawley Behavioral phenotyping of rodents. , 2003, Comparative medicine.

[123]  A. J Spink,et al.  The EthoVision video tracking system—A tool for behavioral phenotyping of transgenic mice , 2001, Physiology & Behavior.

[124]  Ilan Golani,et al.  SEE: a tool for the visualization and analysis of rodent exploratory behavior , 2001, Neuroscience & Biobehavioral Reviews.

[125]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[126]  Figure-Ground Discrimination: A , 1993 .

[127]  K Nakayama,et al.  Experiencing and perceiving visual surfaces. , 1992, Science.

[128]  Michael Domjan,et al.  Comparative psychology and the study of animal learning. , 1987 .

[129]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .

[130]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[131]  A FORTRAN IV program for linear contrasts in designs with repeated measurements , 1978 .

[132]  G. Baerends The functional organization of behaviour , 1976, Animal Behaviour.

[133]  H. Berg Chemotaxis in bacteria. , 1975, Annual review of biophysics and bioengineering.

[134]  Howard C. Berg,et al.  Bacterial behaviour , 1975, Nature.

[135]  S. Benzer,et al.  From the gene to behavior. , 1971, JAMA.

[136]  A. Fuchs Saccadic and smooth pursuit eye movements in the monkey , 1967, The Journal of physiology.

[137]  D. Wilson Insect walking. , 1966, Annual review of entomology.

[138]  N. Tinbergen,et al.  The Study of Instinct , 1953 .