An operational calculus for the euclidean motion group with applications in robotics and polymer science

In this article we develop analytical and computational tools arising from harmonic analysis on the motion group of three-dimensional Euclidean space. We demonstrate these tools in the context of applications in robotics and polymer science. To this end, we review the theory of unitary representations of the motion group of three dimensional Euclidean space. The matrix elements of the irreducible unitary representations are calculated and the Fourier transform of functions on the motion group is defined. New symmetry and operational properties of the Fourier transform are derived. A technique for the solution of convolution equations arising in robotics is presented and the corresponding regularized problem is solved explicity for particular functions. A partial differential equation from polymer science is shown to be solvable using the operational properties of the Euclidean-group Fourier transform.

[1]  R. A. Minlos,et al.  Representations of the Rotation and Lorentz Groups and Their Applications , 1965 .

[2]  K. Kumahara,et al.  An analogue of the Paley-Wiener theorem for the euclidean motion group , 1971 .

[3]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[4]  Reiner Lenz,et al.  Group Theoretical Methods in Image Processing , 1990, Lecture Notes in Computer Science.

[5]  J. S. Rno Clebsch‐Gordan coefficients and special functions related to the Euclidean group in three‐space , 1974 .

[6]  F. R. Gantmakher The Theory of Matrices , 1984 .

[7]  Willard Miller,et al.  Lie Theory and Special Functions , 1969 .

[8]  G. Mackey Induced representations of groups and quantum mechanics , 1968 .

[9]  Gregory S. Chirikjian,et al.  Numerical convolution on the Euclidean group with applications to workspace generation , 1998, IEEE Trans. Robotics Autom..

[10]  Gregory S. Chirikjian,et al.  Fredholm integral equations on the Euclidean motion group , 1996 .

[11]  Gregory S. Chirikjian,et al.  Efficient workspace generation for binary manipulators with many actuators , 1995, J. Field Robotics.

[12]  Jorge Angeles,et al.  Rational kinematics , 1989 .

[13]  A. S. Wightman,et al.  On the Localizability of Quantum Mechanical Systems , 1962 .

[14]  F. Park,et al.  Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications , 1995 .

[15]  M. N. Jones,et al.  Spherical Harmonics and Tensors for Classical Field Theory , 1985 .

[16]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[17]  Hiromi Yamakawa,et al.  Helical Wormlike Chains in Polymer Solutions , 1997 .

[18]  H. W. Turnbull,et al.  Lectures on Matrices , 1934 .

[19]  K. Kanatani Group-Theoretical Methods in Image Understanding , 1990 .

[20]  Gregory S. Chirikjian,et al.  Synthesis of binary manipulators using the Fourier transform on the Euclidean Group , 1999 .

[21]  N. Vilenkin,et al.  Representation of Lie groups and special functions , 1991 .

[22]  Ulrich W. Suter,et al.  Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems , 1994 .

[23]  Adolf Karger,et al.  Space kinematics and Lie groups , 1985 .

[24]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[25]  Gregory S. Chirikjian,et al.  Kinematic Synthesis of Mechanisms and Robotic Manipulators With Binary Actuators , 1995 .

[26]  Gregory S. Chirikjian,et al.  Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[27]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[28]  G. Chirikjian,et al.  Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .

[29]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[30]  D. Gurarie Symmetries and Laplacians: Introduction to Harmonic Analysis, Group Representations and Applications , 1992 .

[31]  K. H. Hunt,et al.  Kinematic geometry of mechanisms , 1978 .

[32]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[33]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.