The Internet of Robotic Things

The Internet of Robotic Things is an emerging vision that brings together pervasive sensors and objects with robotic and autonomous systems. This survey examines how the merger of robotic and Internet of Things technologies will advance the abilities of both the current Internet of Things and the current robotic systems, thus enabling the creation of new, potentially disruptive services. We discuss some of the new technological challenges created by this merger and conclude that a truly holistic view is needed but currently lacking.

[1]  Jung Hun Kim,et al.  Path-tracking simulation and field tests for an auto-guidance tillage tractor for a paddy field , 2015, Comput. Electron. Agric..

[2]  Y. Charlie Hu,et al.  Mobility-aware ad hoc routing protocols for networking mobile robot teams , 2007, Journal of Communications and Networks.

[3]  Sébastien Gérard,et al.  Towards a core ontology for robotics and automation , 2013, Robotics Auton. Syst..

[4]  Yael Edan,et al.  Vision-based hand-gesture applications , 2011, Commun. ACM.

[5]  Stefano Chessa,et al.  Internet of Robotic Things-Converging Sensing / Actuating , Hypoconnectivity , Artificial Intelligence and IoT Platforms , 2017 .

[6]  Giancarlo Fortino,et al.  Middlewares for Smart Objects and Smart Environments: Overview and Comparison , 2014, Internet of Things Based on Smart Objects, Technology, Middleware and Applications.

[7]  Alessandro Saffiotti,et al.  A Cloud Robotics Solution to Improve Social Assistive Robots for Active and Healthy Aging , 2016, International Journal of Social Robotics.

[8]  Niko Siltala,et al.  Formal resource and capability descriptions supporting rapid reconfiguration of assembly systems , 2016, 2016 IEEE International Symposium on Assembly and Manufacturing (ISAM).

[9]  Ray Y. Zhong,et al.  RFID-enabled real-time manufacturing execution system for mass-customization production , 2013 .

[10]  Beno Benhabib,et al.  A Survey of Autonomous Human Affect Detection Methods for Social Robots Engaged in Natural HRI , 2016, J. Intell. Robotic Syst..

[11]  Fernando Díaz del Río,et al.  A Tradeoff Analysis of a Cloud-Based Robot Navigation Assistant Using Stereo Image Processing , 2015, IEEE Transactions on Automation Science and Engineering.

[12]  M. Brian Blake,et al.  Distributed Service-Oriented Robotics , 2011, IEEE Internet Computing.

[13]  Sotiris Makris,et al.  Service Oriented Architecture for Dynamic Scheduling of Mobile Robots for Material Supply , 2016 .

[14]  M. Srbinovska,et al.  Environmental parameters monitoring in precision agriculture using wireless sensor networks , 2015 .

[15]  Alessandro Oltramari,et al.  Pursuing Artificial General Intelligence by Leveraging the Knowledge Capabilities of ACT-R , 2012, AGI.

[16]  Antonio Lieto,et al.  Representational Limits in Cognitive Architectures , 2016, EUCognition.

[17]  Julien Bidot,et al.  Artificial Intelligence Planning for Ambient Environments , 2011 .

[18]  João C. P. Reis Towards an Industrial Agent Oriented Approach , 2014 .

[19]  Cyrill Stachniss,et al.  Simultaneous Localization and Mapping , 2016, Springer Handbook of Robotics, 2nd Ed..

[20]  Nilanjan Sarkar,et al.  Psychophysiological Feedback for Adaptive Human–Robot Interaction (HRI) , 2014 .

[21]  Filip De Turck,et al.  AIOLOS: Middleware for improving mobile application performance through cyber foraging , 2012, J. Syst. Softw..

[22]  Charles C. Kemp,et al.  RFID-Guided Robots for Pervasive Automation , 2010, IEEE Pervasive Computing.

[23]  DESIGN OF MULTI ROBOT SYSTEM USING FUZZY BASED IOT , 2017 .

[24]  Christian Wietfeld,et al.  An OMNeT++ based Framework for Mobility-aware Routing in Mobile Robotic Networks , 2016, ArXiv.

[25]  Andrey V. Savkin,et al.  Nonlinear sliding mode control of an unmanned agricultural tractor in the presence of sliding and control saturation , 2013, Robotics Auton. Syst..

[26]  Aaron F. Bobick,et al.  Probabilistic human action prediction and wait-sensitive planning for responsive human-robot collaboration , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[27]  Jaime Lloret,et al.  Context-Aware Cloud Robotics for Material Handling in Cognitive Industrial Internet of Things , 2018, IEEE Internet of Things Journal.

[28]  Vittorio Rampa,et al.  Safe human-robot cooperation through sensor-less radio localization , 2014, 2014 12th IEEE International Conference on Industrial Informatics (INDIN).

[29]  Jong-Hwan Kim,et al.  Ubiquitous Robot: A New Paradigm for Integrated Services , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[30]  Alessandro Saffiotti,et al.  Inexpensive, reliable and localization-free navigation using an RFID floor , 2015, 2015 European Conference on Mobile Robots (ECMR).

[31]  Narendra Singh Raghuwanshi,et al.  Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges , 2015, Comput. Electron. Agric..

[32]  Peter I. Corke,et al.  A distributed robotic vision service , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Lida Xu,et al.  The internet of things: a survey , 2014, Information Systems Frontiers.

[34]  Jaeyoung Choi,et al.  A rule-based context transforming model for robot services in internet of things environment , 2017, 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[35]  Gonzalo Pajares,et al.  New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots , 2014, TheScientificWorldJournal.

[36]  Alessandro Saffiotti,et al.  The PEIS-Ecology project: Vision and results , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Matthew S. Reynolds,et al.  In-hand radio frequency identification (RFID) for robotic manipulation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[38]  Alessandro Saffiotti,et al.  Development of a Socially Believable Multi-Robot Solution from Town to Home , 2014, Cognitive Computation.

[39]  Cezary Zielinski,et al.  Reconfigurable Agent Architecture for Robots Utilising Cloud Computing , 2015, Progress in Automation, Robotics and Measuring Techniques.

[40]  Filip De Turck,et al.  Internet of Robotic Things: Context-Aware and Personalized Interventions of Assistive Social Robots (Short Paper) , 2016, 2016 5th IEEE International Conference on Cloud Networking (Cloudnet).

[41]  Christopher Assad,et al.  Gesture-based robot control with variable autonomy from the JPL BioSleeve , 2013, 2013 IEEE International Conference on Robotics and Automation.

[42]  Mathias Broxvall,et al.  The PEIS kernel : a middleware for ubiquitous robotics , 2007 .

[43]  Lionel Lapierre,et al.  Enhancing fault tolerance of autonomous mobile robots , 2015, Robotics Auton. Syst..

[44]  Cristanel Razafimandimby,et al.  A Neural Network and IoT Based Scheme for Performance Assessment in Internet of Robotic Things , 2016, 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI).

[45]  Min Chen,et al.  CP-Robot: Cloud-Assisted Pillow Robot for Emotion Sensing and Interaction , 2016 .

[46]  Aljoscha Pörtner,et al.  Ambient Assisted Robot Object Search , 2017, ICOST.

[47]  Erik Cambria,et al.  Affective Computing and Sentiment Analysis , 2016, IEEE Intelligent Systems.

[48]  Gaurav S. Sukhatme,et al.  Toward risk aware mission planning for Autonomous Underwater Vehicles , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Renan Maffei,et al.  Exploring the IEEE ontology for robotics and automation for heterogeneous agent interaction , 2015 .

[50]  Guoqiang Hu,et al.  Cloud robotics: architecture, challenges and applications , 2012, IEEE Network.

[51]  Ankur Roy Chowdhury IoT and Robotics: a synergy , 2017, PeerJ Prepr..

[52]  Boris E. R. de Ruyter,et al.  Assessing the effects of building social intelligence in a robotic interface for the home , 2005, Interact. Comput..

[53]  Nancy M. Amato,et al.  A Roadmap for US Robotics - From Internet to Robotics 2020 Edition , 2021, Found. Trends Robotics.

[54]  Shuichi Nishio,et al.  Cloud networked robotics , 2012, IEEE Network.

[55]  Kevin Lee,et al.  Tell me Dave: Context-sensitive grounding of natural language to manipulation instructions , 2014, Int. J. Robotics Res..

[56]  Pieter Abbeel,et al.  Image Object Label 3 D CAD Model Candidate Grasps Google Object Recognition Engine Google Cloud Storage Select Feasible Grasp with Highest Success Probability Pose EstimationCamera Robots Cloud 3 D Sensor , 2014 .

[57]  Anis Koubaa,et al.  Five Traits of Performance Enhancement Using Cloud Robotics: A Survey , 2014, EUSPN/ICTH.

[58]  Alessandro Saffiotti,et al.  Learning context-aware mobile robot navigation in home environments , 2014, IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications.

[59]  Imran Khan,et al.  Service composition for IP smart object using realtime Web protocols: Concept and research challenges , 2016, Comput. Stand. Interfaces.

[60]  George Chryssolouris,et al.  Autonomous Production Systems Using Open Architectures and Mobile Robotic Structures , 2015 .

[61]  Natàlia Hurtós,et al.  ROSPlan: Planning in the Robot Operating System , 2015, ICAPS.

[62]  Yael Edan,et al.  Harvesting Robots for High‐value Crops: State‐of‐the‐art Review and Challenges Ahead , 2014, J. Field Robotics.

[63]  Khalil Drira,et al.  IoT-O, a Core-Domain IoT Ontology to Represent Connected Devices Networks , 2016, EKAW.

[64]  Bo Zhou,et al.  Decision-Theoretical Navigation of Service Robots Using POMDPs with Human-Robot Co-Occurrence Prediction , 2013 .

[65]  Vera Stavroulaki,et al.  Cognitive Management for the Internet of Things: A Framework for Enabling Autonomous Applications , 2013, IEEE Vehicular Technology Magazine.

[66]  Young-Guk Ha,et al.  Towards a Ubiquitous Robotic Companion: Design and Implementation of Ubiquitous Robotic Service Framework , 2005 .

[67]  Alessandro Saffiotti,et al.  Network robot systems , 2008, Robotics Auton. Syst..

[68]  Timo Lindhorst,et al.  Dependable Communication for Mobile Robots in Industrial Wireless Mesh Networks , 2015, Advances in Social Media Analysis.

[69]  Roland Siegwart,et al.  Map API - scalable decentralized map building for robots , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[70]  Roberto Colella,et al.  Industrial Internet of things at work: a case study analysis in robotic-aided environmental monitoring , 2017, IET Wirel. Sens. Syst..

[71]  Adriana Tapus,et al.  Stress Game: The Role of Motivational Robotic Assistance in Reducing User’s Task Stress , 2015, Int. J. Soc. Robotics.

[72]  Quan Wang,et al.  Comparative Examination on Architecture and Protocol of Industrial Wireless Sensor Network Standards , 2016, IEEE Communications Surveys & Tutorials.

[73]  Bilge Mutlu,et al.  Robots in organizations: The role of workflow, social, and environmental factors in human-robot interaction , 2008, 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[74]  Raffaello D'Andrea,et al.  Rapyuta: A Cloud Robotics Platform , 2015, IEEE Transactions on Automation Science and Engineering.

[75]  Michael Beetz,et al.  Robots in the kitchen: Exploiting ubiquitous sensing and actuation , 2008, Robotics Auton. Syst..

[76]  Chau Yuen,et al.  Indoor Positioning Using Visible LED Lights , 2015, ACM Comput. Surv..

[77]  Michael Beetz,et al.  Cognition-Enabled Robot Control for Mixed Human-Robot Rescue Teams , 2014, IAS.

[78]  Ingrid Moerman,et al.  To Mesh or not to Mesh: Flexible Wireless Indoor Communication Among Mobile Robots in Industrial Environments , 2016, ADHOC-NOW.

[79]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[80]  Leh Luoh,et al.  ZigBee-based intelligent indoor positioning system soft computing , 2014, Soft Comput..

[81]  Alessandro Saffiotti,et al.  Human-aware task planning: An application to mobile robots , 2010, TIST.

[82]  Huifang Chen,et al.  Spatiotemporal Tracking of Ocean Current Field With Distributed Acoustic Sensor Network , 2017, IEEE Journal of Oceanic Engineering.

[83]  Jörg Kaiser,et al.  Distributed management and representation of data and context in robotic applications , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[84]  Khalil Drira,et al.  A Model-Driven Methodology for the Design of Autonomic and Cognitive IoT-Based Systems: Application to Healthcare , 2017, IEEE Transactions on Emerging Topics in Computational Intelligence.

[85]  Ana Paiva,et al.  Sensors in the wild: Exploring electrodermal activity in child-robot interaction , 2013, 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[86]  Zahra J. Muhsin,et al.  Robot Assistant in Management of Diabetes in Children Based on the Internet of Things , 2017, IEEE Internet of Things Journal.

[87]  Steven Bohez,et al.  Sensor fusion for robot control through deep reinforcement learning , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[88]  Stefano Carpin,et al.  DATE: A handheld co-robotic device for automated tuning of emitters to enable precision irrigation , 2016, 2016 IEEE International Conference on Automation Science and Engineering (CASE).

[89]  Jaeho Kim,et al.  M2M Service Platforms: Survey, Issues, and Enabling Technologies , 2014, IEEE Communications Surveys & Tutorials.

[90]  Shueng-Han Gary Chan,et al.  Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons , 2016, IEEE Communications Surveys & Tutorials.

[91]  Weisong Shi,et al.  Edge Computing: Vision and Challenges , 2016, IEEE Internet of Things Journal.

[92]  Partha Pratim Ray,et al.  Internet of Robotic Things: Concept, Technologies, and Challenges , 2016, IEEE Access.

[93]  Shuichi Nishio,et al.  Ubiquitous Network Robot Platform for Realizing Integrated Robotic Applications , 2012, IAS.

[94]  Stefano Chessa,et al.  A General Purpose Distributed Learning Model for Robotic Ecologies , 2012, SyRoCo.

[95]  Amit P. Sheth,et al.  The SSN ontology of the W3C semantic sensor network incubator group , 2012, J. Web Semant..

[96]  Priyanka Bhavanam,et al.  PERFORMANCE ASSESSMENT IN INTERNET OF ROBOTIC THINGS BASED ON IOT , 2017 .

[97]  Giancarlo Fortino,et al.  Management of Cyber Physical Objects in the Future Internet of Things, Methods, Architectures and Applications , 2016, Management of Cyber Physical Objects in the Future Internet of Things.

[98]  Steven Bohez,et al.  Middleware Platform for Distributed Applications Incorporating Robots, Sensors and the Cloud , 2016, 2016 5th IEEE International Conference on Cloud Networking (Cloudnet).

[99]  Ron Alterovitz,et al.  Robot Planning in the Real World: Research Challenges and Opportunities , 2016, AI Mag..